001     842652
005     20250314084117.0
020 _ _ |a 978-1-5090-5659-0
024 7 _ |a 10.1109/LDAV.2016.7874340
|2 doi
037 _ _ |a FZJ-2018-00859
041 _ _ |a English
100 1 _ |a Vierjahn, Tom
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 2016 IEEE 6th Symposium on Large Data Analysis and Visualization
|g LDAV 2016
|c Baltimore, MD
|d 2016-10-23 - 2016-10-28
|w USA
245 _ _ |a Correlating sub-phenomena in performance data in the frequency domain
260 _ _ |c 2016
|b IEEE
300 _ _ |a 105-106
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1517208963_23358
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Finding and understanding correlated performance behaviour of the individual functions of massively parallel high-performance computing (HPC) applications is a time-consuming task. In this poster, we propose filtered correlation analysis for automatically locating interdependencies in call-path performance profiles. Transforming the data into the frequency domain splits a performance phenomenon into sub-phenomena to be correlated
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Hermanns, Marc-Andre
|0 P:(DE-Juel1)168253
|b 1
|u fzj
700 1 _ |a Mohr, Bernd
|0 P:(DE-Juel1)132199
|b 2
|u fzj
700 1 _ |a Muller, Matthias S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kuhlen, Torsten W.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hentschel, Bernd
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1109/LDAV.2016.7874340
856 4 _ |u https://juser.fz-juelich.de/record/842652/files/07874340.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842652/files/07874340.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842652/files/07874340.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842652/files/07874340.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842652/files/07874340.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842652/files/07874340.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:842652
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168253
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132199
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21