000842663 001__ 842663
000842663 005__ 20240711114052.0
000842663 0247_ $$2doi$$a10.1088/1742-6596/936/1/012009
000842663 0247_ $$2ISSN$$a1742-6588
000842663 0247_ $$2ISSN$$a1742-6596
000842663 0247_ $$2Handle$$a2128/16858
000842663 0247_ $$2WOS$$aWOS:000428194400009
000842663 037__ $$aFZJ-2018-00870
000842663 082__ $$a530
000842663 1001_ $$0P:(DE-Juel1)5089$$aTokar, Mikhail$$b0$$eCorresponding author$$ufzj
000842663 245__ $$aAccelerated procedure to solve kinetic equation for neutral atoms in a hot plasma
000842663 260__ $$aBristol$$bIOP Publ.$$c2017
000842663 3367_ $$2DRIVER$$aarticle
000842663 3367_ $$2DataCite$$aOutput Types/Journal article
000842663 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1517215180_23357
000842663 3367_ $$2BibTeX$$aARTICLE
000842663 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842663 3367_ $$00$$2EndNote$$aJournal Article
000842663 520__ $$aThe recombination of plasma charged components, electrons and ions of hydrogen isotopes, on the wall of a fusion reactor is a source of neutral molecules and atoms, recycling back into the plasma volume. Here neutral species participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically directed velocities are generated. Some fraction of these hot atoms hit the wall. Statistical Monte Carlo methods normally used to model c-x atoms are too time consuming for reasonably small level of accident errors and extensive parameter studies are problematic. By applying pass method to evaluate integrals from functions, including the ion velocity distribution, an iteration approach to solve one-dimensional kinetic equation [1], being alternative to Monte Carlo procedure, has been tremendously accelerated, at least by a factor of 30-50 [2]. Here this approach is developed further to solve the 2-D kinetic equation, applied to model the transport of c-x atoms in the vicinity of an opening in the wall, e.g., the entrance of the duct guiding to a diagnostic installation. This is necessary to determine firmly the energy spectrum of c-x atoms penetrating into the duct and to assess the erosion of the installation there. The results of kinetic modeling are compared with those obtained with the diffusion description for c-x atoms, being strictly relevant under plasma conditions of low temperature and high density, where the mean free path length between c-x collisions is much smaller than that till the atom ionization by electrons. It is demonstrated that the previous calculations [3], done with the diffusion approximation for c-x atoms, overestimate the erosion rate of Mo mirrors in a reactor by a factor of 3 compared to the result of the present kinetic study.
000842663 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000842663 588__ $$aDataset connected to CrossRef
000842663 773__ $$0PERI:(DE-600)2166409-2$$a10.1088/1742-6596/936/1/012009$$gVol. 936, p. 012009 -$$n1$$p012009 -$$tJournal of physics / Conference Series$$v936$$x1742-6596$$y2017
000842663 8564_ $$uhttps://juser.fz-juelich.de/record/842663/files/Tokar_2017_J._Phys.__Conf._Ser._936_012009.pdf$$yOpenAccess
000842663 8564_ $$uhttps://juser.fz-juelich.de/record/842663/files/Tokar_2017_J._Phys.__Conf._Ser._936_012009.gif?subformat=icon$$xicon$$yOpenAccess
000842663 8564_ $$uhttps://juser.fz-juelich.de/record/842663/files/Tokar_2017_J._Phys.__Conf._Ser._936_012009.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842663 8564_ $$uhttps://juser.fz-juelich.de/record/842663/files/Tokar_2017_J._Phys.__Conf._Ser._936_012009.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842663 8564_ $$uhttps://juser.fz-juelich.de/record/842663/files/Tokar_2017_J._Phys.__Conf._Ser._936_012009.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842663 8564_ $$uhttps://juser.fz-juelich.de/record/842663/files/Tokar_2017_J._Phys.__Conf._Ser._936_012009.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842663 909CO $$ooai:juser.fz-juelich.de:842663$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000842663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5089$$aForschungszentrum Jülich$$b0$$kFZJ
000842663 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000842663 9141_ $$y2017
000842663 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000842663 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842663 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000842663 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000842663 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842663 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842663 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000842663 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000842663 9801_ $$aFullTexts
000842663 980__ $$ajournal
000842663 980__ $$aVDB
000842663 980__ $$aUNRESTRICTED
000842663 980__ $$aI:(DE-Juel1)IEK-4-20101013
000842663 981__ $$aI:(DE-Juel1)IFN-1-20101013