000842671 001__ 842671
000842671 005__ 20230426083155.0
000842671 0247_ $$2doi$$a10.1103/PhysRevB.97.024431
000842671 0247_ $$2ISSN$$a0163-1829
000842671 0247_ $$2ISSN$$a0556-2805
000842671 0247_ $$2ISSN$$a1094-1622
000842671 0247_ $$2ISSN$$a1095-3795
000842671 0247_ $$2ISSN$$a1098-0121
000842671 0247_ $$2ISSN$$a1550-235X
000842671 0247_ $$2ISSN$$a2469-9950
000842671 0247_ $$2ISSN$$a2469-9969
000842671 0247_ $$2Handle$$a2128/16861
000842671 0247_ $$2WOS$$aWOS:000423428000004
000842671 0247_ $$2altmetric$$aaltmetric:31438808
000842671 037__ $$aFZJ-2018-00878
000842671 082__ $$a530
000842671 1001_ $$0P:(DE-Juel1)162449$$aDos Santos, Flaviano José$$b0$$eCorresponding author$$ufzj
000842671 245__ $$aSpin-resolved inelastic electron scattering by spin waves in noncollinear magnets
000842671 260__ $$aWoodbury, NY$$bInst.$$c2018
000842671 3367_ $$2DRIVER$$aarticle
000842671 3367_ $$2DataCite$$aOutput Types/Journal article
000842671 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1517220945_23357
000842671 3367_ $$2BibTeX$$aARTICLE
000842671 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842671 3367_ $$00$$2EndNote$$aJournal Article
000842671 520__ $$aTopological noncollinear magnetic phases of matter are at the heart of many proposals for future information nanotechnology, with novel device concepts based on ultrathin films and nanowires. Their operation requires understanding and control of the underlying dynamics, including excitations such as spin waves. So far, no experimental technique has attempted to probe large wave-vector spin waves in noncollinear low-dimensional systems. In this paper, we explain how inelastic electron scattering, being suitable for investigations of surfaces and thin films, can detect the collective spin-excitation spectra of noncollinear magnets. To reveal the particularities of spin waves in such noncollinear samples, we propose the usage of spin-polarized electron-energy-loss spectroscopy augmented with a spin analyzer. With the spin analyzer detecting the polarization of the scattered electrons, four spin-dependent scattering channels are defined, which allow us to filter and select specific spin-wave modes. We take as examples a topological nontrivial skyrmion lattice, a spin-spiral phase, and the conventional ferromagnet. Then we demonstrate that, counterintuitively and in contrast to the ferromagnetic case, even non-spin-flip processes can generate spin waves in noncollinear substrates. The measured dispersion and lifetime of the excitation modes permit us to fingerprint the magnetic nature of the substrate.
000842671 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000842671 542__ $$2Crossref$$i2018-01-26$$uhttps://link.aps.org/licenses/aps-default-license
000842671 588__ $$aDataset connected to CrossRef
000842671 7001_ $$0P:(DE-Juel1)145395$$ados Santos Dias, Manuel$$b1$$ufzj
000842671 7001_ $$0P:(DE-Juel1)162225$$aGuimaraes, Filipe$$b2$$ufzj
000842671 7001_ $$0P:(DE-Juel1)157840$$aBouaziz, Juba$$b3$$ufzj
000842671 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b4$$ufzj
000842671 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.97.024431$$bAmerican Physical Society (APS)$$d2018-01-26$$n2$$p024431$$tPhysical Review B$$v97$$x2469-9950$$y2018
000842671 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.97.024431$$gVol. 97, no. 2, p. 024431$$n2$$p024431$$tPhysical review / B$$v97$$x2469-9950$$y2018
000842671 8564_ $$uhttps://juser.fz-juelich.de/record/842671/files/PhysRevB.97.024431.pdf$$yOpenAccess
000842671 8564_ $$uhttps://juser.fz-juelich.de/record/842671/files/PhysRevB.97.024431.gif?subformat=icon$$xicon$$yOpenAccess
000842671 8564_ $$uhttps://juser.fz-juelich.de/record/842671/files/PhysRevB.97.024431.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842671 8564_ $$uhttps://juser.fz-juelich.de/record/842671/files/PhysRevB.97.024431.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842671 8564_ $$uhttps://juser.fz-juelich.de/record/842671/files/PhysRevB.97.024431.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842671 8564_ $$uhttps://juser.fz-juelich.de/record/842671/files/PhysRevB.97.024431.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842671 909CO $$ooai:juser.fz-juelich.de:842671$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000842671 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162449$$aForschungszentrum Jülich$$b0$$kFZJ
000842671 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145395$$aForschungszentrum Jülich$$b1$$kFZJ
000842671 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162225$$aForschungszentrum Jülich$$b2$$kFZJ
000842671 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157840$$aForschungszentrum Jülich$$b3$$kFZJ
000842671 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b4$$kFZJ
000842671 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000842671 9141_ $$y2018
000842671 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842671 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000842671 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000842671 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000842671 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842671 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000842671 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842671 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000842671 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842671 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000842671 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000842671 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842671 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842671 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000842671 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000842671 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000842671 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000842671 980__ $$ajournal
000842671 980__ $$aVDB
000842671 980__ $$aUNRESTRICTED
000842671 980__ $$aI:(DE-Juel1)IAS-1-20090406
000842671 980__ $$aI:(DE-Juel1)PGI-1-20110106
000842671 980__ $$aI:(DE-82)080009_20140620
000842671 980__ $$aI:(DE-82)080012_20140620
000842671 9801_ $$aFullTexts
000842671 999C5 $$1A. N. Bogdanov$$2Crossref$$oA. N. Bogdanov 1989$$y1989
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature05056
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2013.243
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms10542
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/18/4/045002
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-017-00313-0
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature23466
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.037203
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3727/44/39/392001
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2013.29
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1240573
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2045
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms5030
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3727/43/26/264001
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2011.06.003
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms5815
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.147201
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys3347
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.054431
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.214436
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.017601
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.064412
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat4223
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.5b00996
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/18/4/045015
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.187203
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6463/aa7573
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.237204
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-648X/aa75a4
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/27/16/166002
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.82.2579
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.91.147201
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.087202
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.177206
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.137203
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.127201
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2013.188
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.024407
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.014420
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.134408
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.118.127203
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(67)90250-8
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.46.8978
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.55.973
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.58.1098
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2014.07.015
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.174402
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i2004-10174-9
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.9553
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/15/5/305
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.064413
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.104423
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.79.4517
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.4772
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.60.63
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00107510110102119
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.69.032103
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.044801
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.181.920
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/21/21/216001
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.054403
000842671 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.11825