001     842671
005     20230426083155.0
024 7 _ |a 10.1103/PhysRevB.97.024431
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/16861
|2 Handle
024 7 _ |a WOS:000423428000004
|2 WOS
024 7 _ |a altmetric:31438808
|2 altmetric
037 _ _ |a FZJ-2018-00878
082 _ _ |a 530
100 1 _ |a Dos Santos, Flaviano José
|0 P:(DE-Juel1)162449
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Spin-resolved inelastic electron scattering by spin waves in noncollinear magnets
260 _ _ |a Woodbury, NY
|c 2018
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1517220945_23357
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Topological noncollinear magnetic phases of matter are at the heart of many proposals for future information nanotechnology, with novel device concepts based on ultrathin films and nanowires. Their operation requires understanding and control of the underlying dynamics, including excitations such as spin waves. So far, no experimental technique has attempted to probe large wave-vector spin waves in noncollinear low-dimensional systems. In this paper, we explain how inelastic electron scattering, being suitable for investigations of surfaces and thin films, can detect the collective spin-excitation spectra of noncollinear magnets. To reveal the particularities of spin waves in such noncollinear samples, we propose the usage of spin-polarized electron-energy-loss spectroscopy augmented with a spin analyzer. With the spin analyzer detecting the polarization of the scattered electrons, four spin-dependent scattering channels are defined, which allow us to filter and select specific spin-wave modes. We take as examples a topological nontrivial skyrmion lattice, a spin-spiral phase, and the conventional ferromagnet. Then we demonstrate that, counterintuitively and in contrast to the ferromagnetic case, even non-spin-flip processes can generate spin waves in noncollinear substrates. The measured dispersion and lifetime of the excitation modes permit us to fingerprint the magnetic nature of the substrate.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
542 _ _ |i 2018-01-26
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a dos Santos Dias, Manuel
|0 P:(DE-Juel1)145395
|b 1
|u fzj
700 1 _ |a Guimaraes, Filipe
|0 P:(DE-Juel1)162225
|b 2
|u fzj
700 1 _ |a Bouaziz, Juba
|0 P:(DE-Juel1)157840
|b 3
|u fzj
700 1 _ |a Lounis, Samir
|0 P:(DE-Juel1)130805
|b 4
|u fzj
773 1 8 |a 10.1103/physrevb.97.024431
|b American Physical Society (APS)
|d 2018-01-26
|n 2
|p 024431
|3 journal-article
|2 Crossref
|t Physical Review B
|v 97
|y 2018
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.97.024431
|g Vol. 97, no. 2, p. 024431
|0 PERI:(DE-600)2844160-6
|n 2
|p 024431
|t Physical review / B
|v 97
|y 2018
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/842671/files/PhysRevB.97.024431.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/842671/files/PhysRevB.97.024431.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/842671/files/PhysRevB.97.024431.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/842671/files/PhysRevB.97.024431.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/842671/files/PhysRevB.97.024431.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/842671/files/PhysRevB.97.024431.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:842671
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162449
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157840
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130805
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts
999 C 5 |1 A. N. Bogdanov
|y 1989
|2 Crossref
|o A. N. Bogdanov 1989
999 C 5 |a 10.1038/nature05056
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2013.243
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms10542
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/18/4/045002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-017-00313-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature23466
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.037203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3727/44/39/392001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2013.29
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1240573
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys2045
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms5030
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3727/43/26/264001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physrep.2011.06.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms5815
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.115.147201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys3347
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.054431
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.214436
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.017601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.89.064412
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat4223
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.nanolett.5b00996
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/18/4/045015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.117.187203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-6463/aa7573
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.119.237204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-648X/aa75a4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/27/16/166002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.82.2579
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.147201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.99.087202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.102.177206
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.104.137203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.127201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2013.188
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.024407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.94.014420
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.134408
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.118.127203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-3697(67)90250-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.46.8978
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.55.973
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.58.1098
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.susc.2014.07.015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.174402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/epl/i2004-10174-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.61.9553
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/15/5/305
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.064413
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.104423
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.79.4517
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.81.4772
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.60.63
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/00107510110102119
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.69.032103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.044801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.181.920
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/21/21/216001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.89.054403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.44.11825
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21