001     842702
005     20210129232434.0
024 7 _ |a 10.1042/BST20170063
|2 doi
024 7 _ |a 0300-5127
|2 ISSN
024 7 _ |a 1470-8752
|2 ISSN
024 7 _ |a WOS:000418440200005
|2 WOS
024 7 _ |a altmetric:28173919
|2 altmetric
024 7 _ |a pmid:29054926
|2 pmid
037 _ _ |a FZJ-2018-00909
082 _ _ |a 540
100 1 _ |a Zerihun, Mehari B.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Biomolecular coevolution and its applications: Going from structure prediction toward signaling, epistasis, and function
260 _ _ |a London
|c 2017
|b Portland Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1517294100_10556
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Evolution leads to considerable changes in the sequence of biomolecules, while their overall structure and function remain quite conserved. The wealth of genomic sequences, the ‘Biological Big Data’, modern sequencing techniques provide allows us to investigate biomolecular evolution with unprecedented detail. Sophisticated statistical models can infer residue pair mutations resulting from spatial proximity. The introduction of predicted spatial adjacencies as constraints in biomolecular structure prediction workflows has transformed the field of protein and RNA structure prediction toward accuracies approaching the experimental resolution limit. Going beyond structure prediction, the same mathematical framework allows mimicking evolutionary fitness landscapes to infer signaling interactions, epistasis, or mutational landscapes.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schug, Alexander
|0 P:(DE-Juel1)173652
|b 1
|e Corresponding author
|u fzj
773 _ _ |a 10.1042/BST20170063
|g Vol. 45, no. 6, p. 1253 - 1261
|0 PERI:(DE-600)2007367-7
|n 6
|p 1253 - 1261
|t Biochemical Society transactions
|v 45
|y 2017
|x 1470-8752
856 4 _ |u https://juser.fz-juelich.de/record/842702/files/1253.full.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842702/files/1253.full.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842702/files/1253.full.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842702/files/1253.full.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842702/files/1253.full.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842702/files/1253.full.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:842702
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173652
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOCHEM SOC T : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21