001     842727
005     20210129232439.0
024 7 _ |a 10.1371/journal.pone.0190048
|2 doi
024 7 _ |a 2128/16892
|2 Handle
024 7 _ |a pmid:29281713
|2 pmid
024 7 _ |a WOS:000419006200058
|2 WOS
024 7 _ |a altmetric:30975946
|2 altmetric
037 _ _ |a FZJ-2018-00927
082 _ _ |a 500
100 1 _ |a Haselier, Christine
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Correlations between specific patterns of spontaneous activity and stimulation efficiency in degenerated retina
260 _ _ |a Lawrence, Kan.
|c 2017
|b PLoS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1517300005_10555
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Retinal prostheses that are currently used to restore vision in patients suffering from retinal degeneration are not adjusted to the changes occurring during the remodeling process of the retina. Recent studies revealed abnormal rhythmic activity in the retina of genetic mouse models of retinitis pigmentosa. Here we describe this abnormal activity also in a pharmacologically-induced (MNU) mouse model of retinal degeneration. To investigate how this abnormal activity affects the excitability of retinal ganglion cells, we recorded the electrical activity from whole mounted retinas of rd10 mice and MNU-treated mice using a microelectrode array system and applied biphasic current pulses of different amplitude and duration to stimulate ganglion cells electrically. We show that the electrical stimulation efficiency is strongly reduced in degenerated retinas, in particular when abnormal activity such as oscillations and rhythmic firing of bursts of action potentials can be observed. Using a prestimulus pulse sequence, we could abolish rhythmic retinal activity. Under these conditions, the stimulation efficiency was enhanced in a few cases but not in the majority of tested cells. Nevertheless, this approach supports the idea that modified stimulation protocols could help to improve the efficiency of retinal prostheses in the future.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Biswas, Sonia
|0 P:(DE-Juel1)144202
|b 1
700 1 _ |a Rösch, Sarah
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Thumann, Gabriele
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Müller, Frank
|0 P:(DE-Juel1)131939
|b 4
|u fzj
700 1 _ |a Walter, Peter
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1371/journal.pone.0190048
|g Vol. 12, no. 12, p. e0190048 -
|0 PERI:(DE-600)2267670-3
|n 12
|p e0190048 -
|t PLoS one
|v 12
|y 2017
|x 1932-6203
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/842727/files/journal.pone.0190048.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/842727/files/journal.pone.0190048.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/842727/files/journal.pone.0190048.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/842727/files/journal.pone.0190048.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/842727/files/journal.pone.0190048.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/842727/files/journal.pone.0190048.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:842727
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131939
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-4-20110106
|k ICS-4
|l Zelluläre Biophysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
981 _ _ |a I:(DE-Juel1)IBI-1-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21