001     842764
005     20210129232448.0
024 7 _ |a 10.1109/AVSS.2017.8078471
|2 doi
024 7 _ |a 2128/16916
|2 Handle
037 _ _ |a FZJ-2018-00964
100 1 _ |a Boltes, Maik
|0 P:(DE-Juel1)132064
|b 0
|e Corresponding author
111 2 _ |a 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance
|g AVSS
|c Lecce
|d 2017-08-29 - 2017-09-01
|w Italy
245 _ _ |a Gathering of data under laboratory conditions for the deep analysis of pedestrian dynamics in crowds
260 _ _ |c 2017
|b IEEE
300 _ _ |a 1-6
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1517317824_10558
|2 PUB:(DE-HGF)
520 _ _ |a For the understanding of the dynamics inside crowds reliable empirical data are needed. On that basis the safety and comfort for pedestrians can be increased and models reflecting the real dynamics can be designed.For that purpose we are developing the free framework PeTrack collecting data from laboratory experiments. With the new integration of the detection of individual codes the presented framework is able to personalize every single trajectory by static information of each participant. The inclusion of inertial sensors allows the tracking of invisible people and capturing the locomotion of the whole body also in dense crowds. Fused information enables the analysis of possible correlations of all observables and thus finding the main influencing parameters for different situations.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|x 1
|c PHD-NO-GRANT-20170405
|a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Schumann, Jette
|0 P:(DE-Juel1)142414
|b 1
|u fzj
700 1 _ |a Salden, Daniel
|0 P:(DE-Juel1)7386
|b 2
773 _ _ |a 10.1109/AVSS.2017.8078471
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/842764/files/08078471.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/842764/files/08078471.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/842764/files/08078471.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/842764/files/08078471.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/842764/files/08078471.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/842764/files/08078471.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:842764
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)142414
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21