000842815 001__ 842815
000842815 005__ 20210129232501.0
000842815 0247_ $$2Handle$$a2128/16947
000842815 037__ $$aFZJ-2018-01011
000842815 041__ $$aEnglish
000842815 1001_ $$0P:(DE-Juel1)142414$$aSchumann, Jette$$b0$$eCorresponding author$$ufzj
000842815 1112_ $$aInternational Conference on Indoor Positioning and Indoor Navigation$$cSapporo$$d2017-09-18 - 2017-09-21$$gIPIN$$wJapan
000842815 245__ $$aTracking of wheelchair users in dense crowds
000842815 260__ $$c2017
000842815 300__ $$a1-4
000842815 3367_ $$2ORCID$$aCONFERENCE_PAPER
000842815 3367_ $$033$$2EndNote$$aConference Paper
000842815 3367_ $$2BibTeX$$aINPROCEEDINGS
000842815 3367_ $$2DRIVER$$aconferenceObject
000842815 3367_ $$2DataCite$$aOutput Types/Conference Paper
000842815 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1517413007_28757
000842815 500__ $$aonline Proceedings, s. http://www.ipin2017.org/proceedings.php
000842815 520__ $$aThis paper proposes a tracking algorithm for wheelchair users fusing Inertial Measurement Unit (IMU) data and trajectory information of surrounding people. This approach is based on a hybrid tracking system for laboratory experiments with pedestrians in dense crowds consisting of cameras and IMUs. A camera system on the ceiling forms the basic detection and tracking system. Current experiments with heterogeneous crowds have arisen new requirements to this system. Participating wheelchair users tend to get occluded by surrounding people which leads to incomplete trajectories. To fill those temporary gaps the data of IMUs that are attached to the wheelchairs are used. The IMU trajectories are calculated with an Inertial Navigation System (INS) algorithm. The orientation is calculated with a sensor fusion filter and the distance is estimated by numerical integration of the acceleration measurements. To limit the drift the calculated velocity of the wheelchair is restricted to the velocity of the pushing person. Preliminary studies were performed to investigate this approach and resulting trajectories are presented.
000842815 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000842815 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000842815 7001_ $$0P:(DE-Juel1)132064$$aBoltes, Maik$$b1$$ufzj
000842815 8564_ $$uhttps://juser.fz-juelich.de/record/842815/files/217.pdf$$yOpenAccess
000842815 8564_ $$uhttps://juser.fz-juelich.de/record/842815/files/217.gif?subformat=icon$$xicon$$yOpenAccess
000842815 8564_ $$uhttps://juser.fz-juelich.de/record/842815/files/217.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842815 8564_ $$uhttps://juser.fz-juelich.de/record/842815/files/217.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842815 8564_ $$uhttps://juser.fz-juelich.de/record/842815/files/217.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842815 8564_ $$uhttps://juser.fz-juelich.de/record/842815/files/217.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842815 909CO $$ooai:juser.fz-juelich.de:842815$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000842815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142414$$aForschungszentrum Jülich$$b0$$kFZJ
000842815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132064$$aForschungszentrum Jülich$$b1$$kFZJ
000842815 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000842815 9141_ $$y2017
000842815 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842815 920__ $$lyes
000842815 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000842815 980__ $$acontrib
000842815 980__ $$aVDB
000842815 980__ $$aUNRESTRICTED
000842815 980__ $$aI:(DE-Juel1)JSC-20090406
000842815 9801_ $$aFullTexts