000842817 001__ 842817
000842817 005__ 20210129232501.0
000842817 0247_ $$2Handle$$a2128/16946
000842817 037__ $$aFZJ-2018-01013
000842817 041__ $$aEnglish
000842817 1001_ $$0P:(DE-Juel1)145289$$aSchmidts, Oliver$$b0$$eCorresponding author
000842817 1112_ $$aInternational Conference on Indoor Positioning and Indoor Navigation$$cSapporo$$d2017-09-18 - 2017-09-21$$gIPIN$$wJapan
000842817 245__ $$aMulti-pedestrian tracking by moving Bluetooth-LE beacons and stationary receivers
000842817 260__ $$c2017
000842817 300__ $$a4 p.
000842817 3367_ $$2ORCID$$aCONFERENCE_PAPER
000842817 3367_ $$033$$2EndNote$$aConference Paper
000842817 3367_ $$2BibTeX$$aINPROCEEDINGS
000842817 3367_ $$2DRIVER$$aconferenceObject
000842817 3367_ $$2DataCite$$aOutput Types/Conference Paper
000842817 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1517412935_28748
000842817 500__ $$aonline Proceedings, s. http://www.ipin2017.org/proceedings.php
000842817 520__ $$aIn this paper we propose an approach for tracking multiple pedestrians with head mounted Bluetooth low energy (LE) beacons in experiments for pedestrian dynamics. To simplify the setup and decrease the costs we invert the common setup for localization with stationary installed Bluetooth beacons for tracking smartphones. Our approach leads to multiple stationary installed receivers and moving Bluetooth beacons attached to peoples’ head. Thus we develop a common architecture setup for both scenarios where the independent positioning solver remains untouched even if the scenarios differ. We use fingerprinting based on stochastic regression for locating individuals in sub areas of rooms instead of determining their exact position.
000842817 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000842817 7001_ $$0P:(DE-Juel1)132064$$aBoltes, Maik$$b1$$ufzj
000842817 7001_ $$0P:(DE-HGF)0$$aKraft, Bodo$$b2
000842817 7001_ $$0P:(DE-HGF)0$$aSchreiber, Marc$$b3
000842817 8564_ $$uhttps://juser.fz-juelich.de/record/842817/files/178.pdf$$yOpenAccess
000842817 8564_ $$uhttps://juser.fz-juelich.de/record/842817/files/178.gif?subformat=icon$$xicon$$yOpenAccess
000842817 8564_ $$uhttps://juser.fz-juelich.de/record/842817/files/178.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842817 8564_ $$uhttps://juser.fz-juelich.de/record/842817/files/178.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842817 8564_ $$uhttps://juser.fz-juelich.de/record/842817/files/178.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842817 8564_ $$uhttps://juser.fz-juelich.de/record/842817/files/178.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842817 909CO $$ooai:juser.fz-juelich.de:842817$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000842817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132064$$aForschungszentrum Jülich$$b1$$kFZJ
000842817 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000842817 9141_ $$y2017
000842817 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842817 920__ $$lyes
000842817 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000842817 980__ $$acontrib
000842817 980__ $$aVDB
000842817 980__ $$aUNRESTRICTED
000842817 980__ $$aI:(DE-Juel1)JSC-20090406
000842817 9801_ $$aFullTexts