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Abstract—In this paper we propose an approach for tracking
multiple pedestrians with head mounted Bluetooth low energy
(LE) beacons in experiments for pedestrian dynamics. To simplify
the setup and decrease the costs we invert the common setup
for localization with stationary installed Bluetooth beacons for
tracking smartphones. Our approach leads to multiple stationary
installed receivers and moving Bluetooth beacons attached to
peoples’ head. Thus we develop a common architecture setup for
both scenarios where the independent positioning solver remains
untouched even if the scenarios differ. We use fingerprinting
based on stochastic regression for locating individuals in sub
areas of rooms instead of determining their exact position.

Index Terms—Bluetooth, fingerprinting, pedestrian tracking

I. INTRODUCTION AND RELATED WORK

In the field of evacuation and pedestrian dynamics re-

search experiments are made to get a deeper insight into

the dynamics between people in crowds, to calibrate arising

computer models and to evaluate computer simulations and

route choice models [1], [2]. In those experiments with up to

1000 participants tracking of multiple pedestrians in an indoor

environment is essential. In the majority of cases, special

camera equipment is used to gain precise trajectories with

centimeter accuracy of all pedestrians also in dense crowds [3].

Additionally, installing multiple cameras inside a building is

coupled with high deployment effort. In this paper we propose

a low cost and easy to install approach for tracking multiple

pedestrians in experimental indoor environments.

For the use of RSSI-based technologies in indoor navigation

there is a well known concept for setting up scenarios and

designing or improving algorithms: Multiple emitters (bea-

cons, access points) are installed stationary in different parts

of the building and a single receiver is moving around, while

determining and tracking its position [4].

However, smartphones are unsuitable as receiver in a multi-

pedestrian tracking scenario because of signal absorption by

human bodies. Especially for tracking multiple pedestrians in

the same room, multi-path propagation and signal absorption

can lead to erroneous localization results for RSSI-based meth-

ods. Therefore, we invert the standard scenario using moving

emitters plus stationary receivers by attaching a beacon to

every participant.

Broadcasting Bluetooth signals with beacons has become

fairly cheap (<$20). In addition, they have already been

adopted for indoor positioning [5]. Furthermore, they are

portable, small and battery driven. Hence, they are easily

mountable at positions of peoples’ body with low absorption.

RSSI-based localization techniques are distinguishable in

fingerprinting and lateration. Fingerprinting methods lead to

more precise localization results [6]. For that reason we chose

a fingerprinting approach.

The remainder of this work is organized as follows: Sec. II

describes the inverted scenario and technical setup for tracking

moving beacons, Sec. III pictures the experimental setup which

is evaluated in Sec. IV. Sec. V concludes the paper.

II. LOCALIZATION ARCHITECTURE SETUP

In the standard scenario for smartphone-based positioning

using fingerprinting as shown in Fig. 1a, many stationary,

emitters are sending signals to a moving receiver, who is

implicitly synchronizing them by their time of arrival. To

determine the position of the receiver, incoming signals have

to be matched against a fingerprint database. The best match

is assumed as correct location of the receiver.

We propose the inverse scenario displayed in Fig. 1b where

Bluetooth beacons are used as moving emitters with receivers

installed stationary inside the building.

Every beacon emits signals at a nearly fixed rate which leads

to raw tuples [(t1, RSSI1), . . . , (tn, RSSIn)]. However, those

raw data cannot be used effectively for localization algorithms

because of signal noise. Therefore, they are consolidated over

a short period of time, resulting in signal captures for time

frames (tf1 , RSSIf1t1 , RSSIf1t2 , . . . , RSSIf1tn).

Combining these signal captures with location information

for the offline-phase leads to the tuples (x, y, tfi , RSSIfi) for

every emitting beaconi where x and y are location coordinates,

t is a discrete time frame and RSSIfi is the mean of all

emitted RSSI-values by beaconi in the time frame. Afterwards

the synchronized tuples are passed to a location solver. Since

we only need area information in our approach, the tuples

reduce to (a, tfi , RSSIfi) for area a. Synchronizing and

transforming raw signals into time framed signal captures are

done implicitly by the receiver in common setups.c© IPIN2017
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(a) Standard scenario setup with a single smartphone as receiver and multiple
Bluetooth beacons as emitter distributed over several rooms.
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(b) Inverse scenario setup with multiple stationary receivers and a moving
Bluetooth beacons which will be tracked.

Fig. 1: Classic scenario setup vs. proposed inverse scenario setup

To prepare this setup for inversion a feature transformer,

that converts raw signal tuples into fingerprints with different

features of the signal captures, is introduced as shown in Fig. 2.

Raw values are sent through the same feature transformer

in the online phase who is then passing them to a location

solver as illustrated in Fig. 3.

A. Inverse system setup with multiple receivers

Due to our architecture-setup for the standard scenario the

red framed parts in Fig. 2 and Fig. 3 can be hosted off-site.

Hence, the localization server is not effected by any change

of the scenario setup. We use Raspberry Pis as receivers since

they are of low hardware cost and easy to deploy.

The only reliable data received on the Raspberry Pis are

Beacon-Mac-Address (address) and RSSI. Thus, we need

to add the time of arrival as timestamp on the Raspberry

Pis to the signal captures for signal synchronization. If the

measurement startup is synchronized, all tuples of the form

(address,RSSIi, ti), where ti is the i-th timestamp, are

synchronized as well.

To achieve a synchronized measurement start with no offset,

we need to introduce a message broker, that sends a start signal

to every receiver at the same time. After the offline-phase is

started, signals are gathered by each Raspberry Pi. After 30 s
the raw signal captures are cut in time frames of 0.7 s by every

receiver. These signals can then be stored to the framed signal

database as in the standard scenario. The message broker is

needed again to synchronize all signals send by the Raspberry

Pis to the server as illustrated in Fig. 4.
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Fig. 2: Enhanced offline-phase of fingerprint-based positioning

(training data gathering)

Note that only the left part differs in Fig. 4 compared

to Fig. 2. The server part remains unchanged. Hence, the

localization server just needs an interface to the message

broker for dealing with the inverted scenario of multiple

receivers.

Introducing a message broker to synchronize framed signal

captures also causes the server side to remain unchanged for

the online-phase as shown in Fig. 5. The conceptual difference

to the offline-phase is that signals are not gathered for a period

of time, but send to the message broker directly after the time

frame has passed.

B. Location solver

Position identification of pedestrians in indoor environments

is made difficult by various reasons of signal noise which

include measurement errors, obstacles (like humans in the

same room), walls and angle between receiver and emitter.

Solely the presence of human bodies inside a room is sufficient

for causing a significant noise [7] even if they are not directly

positioned in the line of sight. Therefore, a robust signal

classification is needed to match fingerprints with subrooms.

Most commonly KNN and Bayes-classification are used where

KNN-approaches may vary by their choice of metric.

However, we choose the stochastic kernel logistic regression

(SKLR), as proposed in [8] with η = 0.6, non-conservative

updating and PUK-kernel [9], since we only need area ac-

curacy for sparse routing experiments. Hence, we also use an

one-vs-all classifier to distinguish between multiple areas. This

approach enables real-time localization.
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Fig. 3: Enhanced online-phase of fingerprint-based positioning

(possible in real time)
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Fig. 4: Inversed scenario process after synchronized offline-

phase start through the message broker

C. Majority voted fingerprinting

Instead of using a single classifier for localization ensemble-

techniques we take multiple classifiers into consideration.

In this paper we utilize a majority vote [10]. Thereby, we

implemented different feature transformers – mean, median,

percentiles – to gain multiple classifiers. An area is considered

as correct if the majority of all used classifiers voted for it.

Nevertheless, they are all based on SKLR. As a consequence

of our architecture we simply have to exchange or add

feature transformer to gain a new classifier. Hence, all used

classifiers have their own database of training fingerprints and

are brought together by majority voting.

III. INVERSED SCENARIO DEMONSTRATION SETUP

We decided to place the beacon on the head for all experi-

ments to minimize possible signal absorption caused by human

bodies. In our evaluation we initially tried to track the area of a

single pedestrian inside only one room as illustrated in Fig. 6.

The Raspberry Pis are located at the corners. Red dashed lines

are showing borders of subrooms where each subroom has a

size of 3m× 3m.

Gathering raw data for fingerprints was done with a single

pedestrian walking around in each subroom for 30 s resulting

in 43 time frames of 0.7 s for each Raspberry Pi.

To examine the accuracy of the position of the proposed

system, we gathered another set of signal-captures where we

knew the correct area. At each reference position in Fig. 6

signals were captured under the same circumstances.

Tables inside of subrooms may cause difficulties during

the offline- and online-phase, since no fingerprint data can

be gathered there. However, this setup is close to reality.

Additionally, we extended the experimental area for a walk
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Fig. 5: Inversed scenario process after synchronized online-

phase start through the message broker
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Fig. 6: Illustrated setup inside the experiment room (green

area) with positions of installed Raspberry Pis, tables and with

positioning reference points. The room is divided into smaller

areas of 3m × 3m by red dashed lines.

through to the hallway in front of the green area and observed

on our visualization if positions were determined correctly.

IV. EVALUATION

We focus on three subrooms in this evaluation: top-mid,

bottom-mid and bottom-right. Results from the bottom-right

area are directly applicable to other corner areas.

Initially we used the arithmetic mean as feature to test our

setup for tracking moving beacons. As shown in TABLE I the

location rate for the bottom right corner with 75% is quite

good. However, areas located at the middle of the room have

a much worse location rate (27% and 39%). In addition, most

signal captures from the bottom-mid area were located in the

top-mid area.

TABLE I: Location rate confusion matrix with arithmetic mean

captured from top-mid bottom-mid bottom-right

located in

top-left 16% 2% 0%

top-mid 39% 36% 12%

top-right 29% 2% 5%

bottom-left 0% 7% 0%

bottom-mid 8% 27% 8%

bottom-right 8% 26% 75%

The affection of desks to reference positions as shown in

Fig. 6 is a possible reason for differences in the location rate

between the top- and bottom-mid area.

Using the combination of 25th, 50th and 75th percentile as

features for the SKLR instead of using a single feature leads

to TABLE II where the bottom-right outcome did not change

notably. Notable is, that positions of the pedestrian can be

clearly determined for corner areas.

The location rate in both middle areas is still a lot worse.

However it was slightly improved for the bottom mid. For the

top-mid area the location rate dropped a little from 39% to

34%. This reveals that combining multiple features can lead

to overall improved results. This shows that different features

provide an enhanced location rate for certain areas.

For that reason we decided to introduce a majority vote

between multiple SKLR with different features and a sliding

window over multiple time frames. Additionally, the use of

different numbers of time frames for every classifier allows
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TABLE II: Location rate with the combination of 25th, 50th

and 75th percentile

captured from top-mid bottom-mid bottom-right

located in

top-left 21% 2% 0%

top-mid 34% 27% 10%

top-right 25% 4% 5%

bottom-left 1% 10% 1%

bottom-mid 8% 29% 9%

bottom-right 11% 27% 75%

the adoption to fast and slow movements which leads to

TABLE III.

TABLE III: Location rate with minimal correlated majority

vote of arithmetic mean over one frame, combination of

arithmetic mean and 50th percentile over to frames and com-

bination of 25th, 50th and 75th percentile over three frames

captured from top-mid bottom-mid bottom-right

located in

top-left 21% 1% 0%

top-mid 35% 26% 6%

top-right 25% 0% 0%

bottom-left 0% 6% 0%

bottom-mid 12% 40% 9%

bottom-right 7% 27% 85%

The results are showing that the majority vote improved

the overall location rate. The location rate of the bottom-

right area increased by 10% to 85% in total. Additionally the

location rate in the bottom mid area has been improved by

11% up to 40%. However, the location rate in the top-mid

area is still 4% lower than by using only the mean as feature.

Nonetheless, majority voted positioning overall is most precise

of the evaluated methods.

A. General observations for walkthroughs

While testing our setup we made observations on factors

influencing the positioning accuracy and robustness.

1) Observations inside a room: Up to seven pedestrians

were walking through the experimental area of Fig. 6 while

tracking them with our real time visualization. The location

rate decreases drastically if a larger pedestrian was standing

between a pedestrian and a Raspberry Pi. However, smaller

or same sized humans did not hace a bad influence on the

results. Furthermore walking speed is crucial for positioning

accuracy. The faster a pedestrian walks, the less precise is the

positioning.

In the experiment, when some individuals were walking

around as moving obstacles without being tracked by mounted

beacons, some of them carried along their smartphone with

activated Bluetooth. As a consequence they were also being

tracked and visualized by accident. In fact most of the time

they were located correctly although the SKLR had not been

trained with signal captures from a smartphone. Hence, the

multi-pedestrian tracking works even with smartphones.

2) Observations while changing rooms: During changing

between the experimental area and the nearby hallway the

room detection rate has reached up to 99%. In all experiments

a miss-positioning outside the actual room occurred only twice

nearby the corresponding door. With minor improvements such

as map matching up to 100% could be reached.

V. CONCLUSIONS AND FUTURE WORK

Providing a low cost solution with still sufficient precision

for tracking multiple pedestrians in routing-experiments is a

challenging task. We propose a system using beacons where

area or room precision is acceptable. Our approach is not

only applicable for tracking beacons but also for the tracking

of smartphones due to their ability to emit iBeacon signals

as well. Tracking an additional pedestrian or object with a

mounted beacon is done by simply turning on the beacon.

Additionally, we propose to use multiple fingerprint features

and ensemble techniques in fingerprinting since it improves the

location results significantly. In the presented approach we

solely used SKLR based fingerprinting. Better results could

probably be obtained if other fingerprinting methods were

considered as well. Since we merely experimented with a

simple majority vote, it could also be weighted, based on

known precision in special areas.

Furthermore, smartphones acting like beacons leads to the

possibility of combining the standard scenario with the in-

verted scenario: Smartphones could emit Bluetooth signals

and receive WiFi signals at the same time so information of

both can be combined. This enables new setup possibilities

for indoor tracking systems.
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