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Abstract—In this paper we propose an approach for tracking
multiple pedestrians with head mounted Bluetooth low energy
(LE) beacons in experiments for pedestrian dynamics. To simplify
the setup and decrease the costs we invert the common setup
for localization with stationary installed Bluetooth beacons for
tracking smartphones. Our approach leads to multiple stationary
installed receivers and moving Bluetooth beacons attached to
peoples’ head. Thus we develop a common architecture setup for
both scenarios where the independent positioning solver remains
untouched even if the scenarios differ. We use fingerprinting
based on stochastic regression for locating individuals in sub
areas of rooms instead of determining their exact position.

Index Terms—Bluetooth, fingerprinting, pedestrian tracking

I. INTRODUCTION AND RELATED WORK

In the field of evacuation and pedestrian dynamics re-
search experiments are made to get a deeper insight into
the dynamics between people in crowds, to calibrate arising
computer models and to evaluate computer simulations and
route choice models [1], [2]. In those experiments with up to
1000 participants tracking of multiple pedestrians in an indoor
environment is essential. In the majority of cases, special
camera equipment is used to gain precise trajectories with
centimeter accuracy of all pedestrians also in dense crowds [3].
Additionally, installing multiple cameras inside a building is
coupled with high deployment effort. In this paper we propose
a low cost and easy to install approach for tracking multiple
pedestrians in experimental indoor environments.

For the use of RSSI-based technologies in indoor navigation
there is a well known concept for setting up scenarios and
designing or improving algorithms: Multiple emitters (bea-
cons, access points) are installed stationary in different parts
of the building and a single receiver is moving around, while
determining and tracking its position [4].

However, smartphones are unsuitable as receiver in a multi-
pedestrian tracking scenario because of signal absorption by
human bodies. Especially for tracking multiple pedestrians in
the same room, multi-path propagation and signal absorption
can lead to erroneous localization results for RSSI-based meth-
ods. Therefore, we invert the standard scenario using moving
emitters plus stationary receivers by attaching a beacon to
every participant.
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Broadcasting Bluetooth signals with beacons has become
fairly cheap (<$20). In addition, they have already been
adopted for indoor positioning [5]. Furthermore, they are
portable, small and battery driven. Hence, they are easily
mountable at positions of peoples’ body with low absorption.

RSSI-based localization techniques are distinguishable in
fingerprinting and lateration. Fingerprinting methods lead to
more precise localization results [6]. For that reason we chose
a fingerprinting approach.

The remainder of this work is organized as follows: Sec. II
describes the inverted scenario and technical setup for tracking
moving beacons, Sec. III pictures the experimental setup which
is evaluated in Sec. IV. Sec. V concludes the paper.

II. LOCALIZATION ARCHITECTURE SETUP

In the standard scenario for smartphone-based positioning
using fingerprinting as shown in Fig. la, many stationary,
emitters are sending signals to a moving receiver, who is
implicitly synchronizing them by their time of arrival. To
determine the position of the receiver, incoming signals have
to be matched against a fingerprint database. The best match
is assumed as correct location of the receiver.

We propose the inverse scenario displayed in Fig. 1b where
Bluetooth beacons are used as moving emitters with receivers
installed stationary inside the building.

Every beacon emits signals at a nearly fixed rate which leads
to raw tuples [(¢1, RSSI),..., (tn, RSSI,)]. However, those
raw data cannot be used effectively for localization algorithms
because of signal noise. Therefore, they are consolidated over
a short period of time, resulting in signal captures for time
frames (ty,, RSSIy,, RSSIf 1y, .., RSSI ).

Combining these signal captures with location information
for the offline-phase leads to the tuples (x,y,ty,, RSSIy,) for
every emitting beacon; where = and y are location coordinates,
t is a discrete time frame and RSSIy, is the mean of all
emitted RSSI-values by beacon; in the time frame. Afterwards
the synchronized tuples are passed to a location solver. Since
we only need area information in our approach, the tuples
reduce to (a,ty,, RSSI;,) for area a. Synchronizing and
transforming raw signals into time framed signal captures are
done implicitly by the receiver in common setups.
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(a) Standard scenario setup with a single smartphone as receiver and multiple (b) Inverse scenario setup with multiple stationary receivers and a moving

Bluetooth beacons as emitter distributed over several rooms.

Bluetooth beacons which will be tracked.

Fig. 1: Classic scenario setup vs. proposed inverse scenario setup

To prepare this setup for inversion a feature transformer,
that converts raw signal tuples into fingerprints with different
features of the signal captures, is introduced as shown in Fig. 2.

Raw values are sent through the same feature transformer
in the online phase who is then passing them to a location
solver as illustrated in Fig. 3.

A. Inverse system setup with multiple receivers

Due to our architecture-setup for the standard scenario the
red framed parts in Fig. 2 and Fig. 3 can be hosted off-site.
Hence, the localization server is not effected by any change
of the scenario setup. We use Raspberry Pis as receivers since
they are of low hardware cost and easy to deploy.

The only reliable data received on the Raspberry Pis are
Beacon-Mac-Address (address) and RSSI. Thus, we need
to add the time of arrival as timestamp on the Raspberry
Pis to the signal captures for signal synchronization. If the
measurement startup is synchronized, all tuples of the form
(address, RSSI;,t;), where t; is the i-th timestamp, are
synchronized as well.

To achieve a synchronized measurement start with no offset,
we need to introduce a message broker, that sends a start signal
to every receiver at the same time. After the offline-phase is
started, signals are gathered by each Raspberry Pi. After 30s
the raw signal captures are cut in time frames of 0.7s by every
receiver. These signals can then be stored to the framed signal
database as in the standard scenario. The message broker is
needed again to synchronize all signals send by the Raspberry
Pis to the server as illustrated in Fig. 4.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

receiver

Fig. 2: Enhanced offline-phase of fingerprint-based positioning
(training data gathering)

Note that only the left part differs in Fig. 4 compared
to Fig. 2. The server part remains unchanged. Hence, the
localization server just needs an interface to the message
broker for dealing with the inverted scenario of multiple
receivers.

Introducing a message broker to synchronize framed signal
captures also causes the server side to remain unchanged for
the online-phase as shown in Fig. 5. The conceptual difference
to the offline-phase is that signals are not gathered for a period
of time, but send to the message broker directly after the time
frame has passed.

B. Location solver

Position identification of pedestrians in indoor environments
is made difficult by various reasons of signal noise which
include measurement errors, obstacles (like humans in the
same room), walls and angle between receiver and emitter.
Solely the presence of human bodies inside a room is sufficient
for causing a significant noise [7] even if they are not directly
positioned in the line of sight. Therefore, a robust signal
classification is needed to match fingerprints with subrooms.
Most commonly KNN and Bayes-classification are used where
KNN-approaches may vary by their choice of metric.

However, we choose the stochastic kernel logistic regression
(SKLR), as proposed in [8] with n = 0.6, non-conservative
updating and PUK-kernel [9], since we only need area ac-
curacy for sparse routing experiments. Hence, we also use an
one-vs-all classifier to distinguish between multiple areas. This
approach enables real-time localization.

receiver

Fig. 3: Enhanced online-phase of fingerprint-based positioning
(possible in real time)
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Fig. 4: Inversed scenario process after synchronized offline-
phase start through the message broker

C. Majority voted fingerprinting

Instead of using a single classifier for localization ensemble-
techniques we take multiple classifiers into consideration.
In this paper we utilize a majority vote [10]. Thereby, we
implemented different feature transformers — mean, median,
percentiles — to gain multiple classifiers. An area is considered
as correct if the majority of all used classifiers voted for it.
Nevertheless, they are all based on SKLR. As a consequence
of our architecture we simply have to exchange or add
feature transformer to gain a new classifier. Hence, all used
classifiers have their own database of training fingerprints and
are brought together by majority voting.

III. INVERSED SCENARIO DEMONSTRATION SETUP

We decided to place the beacon on the head for all experi-
ments to minimize possible signal absorption caused by human
bodies. In our evaluation we initially tried to track the area of a
single pedestrian inside only one room as illustrated in Fig. 6.
The Raspberry Pis are located at the corners. Red dashed lines
are showing borders of subrooms where each subroom has a
size of 3m X 3m.

Gathering raw data for fingerprints was done with a single
pedestrian walking around in each subroom for 30s resulting
in 43 time frames of 0.7s for each Raspberry Pi.

To examine the accuracy of the position of the proposed
system, we gathered another set of signal-captures where we
knew the correct area. At each reference position in Fig. 6
signals were captured under the same circumstances.

Tables inside of subrooms may cause difficulties during
the offline- and online-phase, since no fingerprint data can
be gathered there. However, this setup is close to reality.
Additionally, we extended the experimental area for a walk

Fig. 5: Inversed scenario process after synchronized online-
phase start through the message broker
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Fig. 6: Illustrated setup inside the experiment room (green
area) with positions of installed Raspberry Pis, tables and with
positioning reference points. The room is divided into smaller
areas of 3m X 3m by red dashed lines.

through to the hallway in front of the green area and observed
on our visualization if positions were determined correctly.

IV. EVALUATION

We focus on three subrooms in this evaluation: top-mid,
bottom-mid and bottom-right. Results from the bottom-right
area are directly applicable to other corner areas.

Initially we used the arithmetic mean as feature to test our
setup for tracking moving beacons. As shown in TABLE I the
location rate for the bottom right corner with 75% is quite
good. However, areas located at the middle of the room have
a much worse location rate (27% and 39%). In addition, most
signal captures from the bottom-mid area were located in the
top-mid area.

TABLE I: Location rate confusion matrix with arithmetic mean

captured from top-mid bottom-mid  bottom-right
located in

top-left 16% 2% 0%
top-mid 39% 36% 12%
top-right 29% 2% 5%
bottom-left 0% 7% 0%
bottom-mid 8% 27% 8%
bottom-right 8% 26% 75%

The affection of desks to reference positions as shown in
Fig. 6 is a possible reason for differences in the location rate
between the top- and bottom-mid area.

Using the combination of 25th, 50th and 75th percentile as
features for the SKLR instead of using a single feature leads
to TABLE II where the bottom-right outcome did not change
notably. Notable is, that positions of the pedestrian can be
clearly determined for corner areas.

The location rate in both middle areas is still a lot worse.
However it was slightly improved for the bottom mid. For the
top-mid area the location rate dropped a little from 39% to
34%. This reveals that combining multiple features can lead
to overall improved results. This shows that different features
provide an enhanced location rate for certain areas.

For that reason we decided to introduce a majority vote
between multiple SKLR with different features and a sliding
window over multiple time frames. Additionally, the use of
different numbers of time frames for every classifier allows



2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan

TABLE II: Location rate with the combination of 25th, 50th
and 75th percentile

captured from top-mid bottom-mid  bottom-right
located in

top-left 21% 2% 0%
top-mid 34% 27% 10%
top-right 25% 4% 5%
bottom-left 1% 10% 1%
bottom-mid 8% 29% 9%
bottom-right 11% 27% 75%

the adoption to fast and slow movements which leads to
TABLE III.

TABLE III: Location rate with minimal correlated majority
vote of arithmetic mean over one frame, combination of
arithmetic mean and 50th percentile over to frames and com-
bination of 25th, 50th and 75th percentile over three frames

captured from top-mid bottom-mid  bottom-right
located in

top-left 21% 1% 0%
top-mid 35% 26% 6%
top-right 25% 0% 0%
bottom-left 0% 6% 0%
bottom-mid 12% 40% 9%
bottom-right 7% 27% 85%

The results are showing that the majority vote improved
the overall location rate. The location rate of the bottom-
right area increased by 10% to 85% in total. Additionally the
location rate in the bottom mid area has been improved by
11% up to 40%. However, the location rate in the top-mid
area is still 4% lower than by using only the mean as feature.
Nonetheless, majority voted positioning overall is most precise
of the evaluated methods.

A. General observations for walkthroughs

While testing our setup we made observations on factors
influencing the positioning accuracy and robustness.

1) Observations inside a room: Up to seven pedestrians
were walking through the experimental area of Fig. 6 while
tracking them with our real time visualization. The location
rate decreases drastically if a larger pedestrian was standing
between a pedestrian and a Raspberry Pi. However, smaller
or same sized humans did not hace a bad influence on the
results. Furthermore walking speed is crucial for positioning
accuracy. The faster a pedestrian walks, the less precise is the
positioning.

In the experiment, when some individuals were walking
around as moving obstacles without being tracked by mounted
beacons, some of them carried along their smartphone with
activated Bluetooth. As a consequence they were also being
tracked and visualized by accident. In fact most of the time
they were located correctly although the SKLR had not been
trained with signal captures from a smartphone. Hence, the
multi-pedestrian tracking works even with smartphones.

2) Observations while changing rooms: During changing
between the experimental area and the nearby hallway the
room detection rate has reached up to 99%. In all experiments
a miss-positioning outside the actual room occurred only twice
nearby the corresponding door. With minor improvements such
as map matching up to 100% could be reached.

V. CONCLUSIONS AND FUTURE WORK

Providing a low cost solution with still sufficient precision
for tracking multiple pedestrians in routing-experiments is a
challenging task. We propose a system using beacons where
area or room precision is acceptable. Our approach is not
only applicable for tracking beacons but also for the tracking
of smartphones due to their ability to emit iBeacon signals
as well. Tracking an additional pedestrian or object with a
mounted beacon is done by simply turning on the beacon.

Additionally, we propose to use multiple fingerprint features
and ensemble techniques in fingerprinting since it improves the
location results significantly. In the presented approach we
solely used SKLR based fingerprinting. Better results could
probably be obtained if other fingerprinting methods were
considered as well. Since we merely experimented with a
simple majority vote, it could also be weighted, based on
known precision in special areas.

Furthermore, smartphones acting like beacons leads to the
possibility of combining the standard scenario with the in-
verted scenario: Smartphones could emit Bluetooth signals
and receive WiFi signals at the same time so information of
both can be combined. This enables new setup possibilities
for indoor tracking systems.
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