001     842848
005     20210129232505.0
024 7 _ |a 10.1016/j.physbeh.2018.01.015
|2 doi
024 7 _ |a 0031-9384
|2 ISSN
024 7 _ |a 1873-507X
|2 ISSN
024 7 _ |a pmid:29378188
|2 pmid
024 7 _ |a WOS:000428833700003
|2 WOS
024 7 _ |a 2128/21082
|2 Handle
024 7 _ |a altmetric:32615548
|2 altmetric
037 _ _ |a FZJ-2018-01031
082 _ _ |a 570
100 1 _ |a Mengotti, P.
|0 P:(DE-Juel1)166200
|b 0
|e Corresponding author
245 _ _ |a How brain response and eating habits modulate food energy estimation
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1518616799_19764
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The estimates we do of the energy content of different foods tend to be inaccurate, depending on several factors. The elements influencing such evaluation are related to the differences in the portion size of the foods shown, their energy density (kcal/g), but also to individual differences of the estimators, such as their body-mass index (BMI) or eating habits. Within this context the contribution of brain regions involved in food-related decisions to the energy estimation process is still poorly understood. Here, normal-weight and overweight/obese women with restrained or non-restrained eating habits, received anodal transcranial direct current stimulation (AtDCS) to modulate the activity of the left dorsolateral prefrontal cortex (dlPFC) while they performed a food energy estimation task. Participants were asked to judge the energy content of food images, unaware that all foods, for the quantity presented, shared the same energy content. Results showed that food energy density was a reliable predictor of their energy content estimates, suggesting that participants relied on their knowledge about the food energy density as a proxy for estimating food energy content. The neuromodulation of the dlPFC interacted with individual differences in restrained eating, increasing the precision of the energy content estimates in participants with higher scores in the restrained eating scale. Our study highlights the importance of eating habits, such as restrained eating, in modulating the activity of the left dlPFC during food appraisal.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Aiello, M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Terenzi, D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Miniussi, C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rumiati, R. I.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.physbeh.2018.01.015
|g p. S0031938418300210
|0 PERI:(DE-600)2008755-X
|p 18-24
|t Physiology & behavior
|v 188
|y 2018
|x 0031-9384
856 4 _ |u https://juser.fz-juelich.de/record/842848/files/1-s2.0-S0031938418300210-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/842848/files/1-s2.0-S0031938418300210-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/842848/files/1-s2.0-S0031938418300210-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/842848/files/1-s2.0-S0031938418300210-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/842848/files/1-s2.0-S0031938418300210-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/842848/files/1-s2.0-S0031938418300210-main.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2018-05-01. Available in OpenAccess from 2019-05-01.
|u https://juser.fz-juelich.de/record/842848/files/Mengotti_2018_Postprint_Physiol%20Behav_How%20brain%20response%20and%20eating%20habits%20modulate%20food%20energy%20estimation.pdf
909 C O |o oai:juser.fz-juelich.de:842848
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166200
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYSIOL BEHAV : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21