000842890 001__ 842890
000842890 005__ 20210129232513.0
000842890 0247_ $$2doi$$a10.1140/epjqt/s40507-017-0057-9
000842890 0247_ $$2arXiv$$aarXiv:1609.09624
000842890 0247_ $$2Handle$$a2128/16987
000842890 0247_ $$2WOS$$aWOS:000407196900001
000842890 0247_ $$2altmetric$$aaltmetric:19017404
000842890 037__ $$aFZJ-2018-01063
000842890 082__ $$a530
000842890 1001_ $$0P:(DE-HGF)0$$aPlacke, B.$$b0$$eCorresponding author
000842890 245__ $$aA model study of present-day Hall-effect circulators
000842890 260__ $$aBerlin$$bSpringer Open$$c2017
000842890 3367_ $$2DRIVER$$aarticle
000842890 3367_ $$2DataCite$$aOutput Types/Journal article
000842890 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1517487735_8241
000842890 3367_ $$2BibTeX$$aARTICLE
000842890 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842890 3367_ $$00$$2EndNote$$aJournal Article
000842890 520__ $$aStimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the $S$ parameters of the device when coupled to 50$\Omega$ ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction $\nu$ of 20), the Hall angle $\theta_H=\tan^{-1}\sigma_{xy}/\sigma_{xx}$ always remains close to $90^\circ$, and the $S$ parameters are close to the analytic predictions of VD for $\theta_H=\pi/2$. As anticipated by VD, MEA find the device to have rather high (k$\Omega$) impedance, and thus to be extremely mismatched to $50\Omega$, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. $\nu=20$, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects.
000842890 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000842890 588__ $$aDataset connected to arXivarXiv, CrossRef
000842890 7001_ $$00000-0002-4035-9654$$aBosco, S.$$b1
000842890 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b2$$eCorresponding author$$ufzj
000842890 773__ $$0PERI:(DE-600)2784501-1$$a10.1140/epjqt/s40507-017-0057-9$$gVol. 4, no. 1, p. 5$$n1$$p5$$tEPJ Quantum Technology$$v4$$x2196-0763$$y2017
000842890 8564_ $$uhttps://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.pdf$$yOpenAccess
000842890 8564_ $$uhttps://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.gif?subformat=icon$$xicon$$yOpenAccess
000842890 8564_ $$uhttps://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842890 8564_ $$uhttps://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842890 8564_ $$uhttps://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842890 8564_ $$uhttps://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842890 909CO $$ooai:juser.fz-juelich.de:842890$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000842890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b2$$kFZJ
000842890 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000842890 9141_ $$y2017
000842890 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842890 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000842890 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000842890 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000842890 920__ $$lyes
000842890 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000842890 980__ $$ajournal
000842890 980__ $$aVDB
000842890 980__ $$aUNRESTRICTED
000842890 980__ $$aI:(DE-Juel1)PGI-2-20110106
000842890 9801_ $$aFullTexts