001 | 842890 | ||
005 | 20210129232513.0 | ||
024 | 7 | _ | |a 10.1140/epjqt/s40507-017-0057-9 |2 doi |
024 | 7 | _ | |a arXiv:1609.09624 |2 arXiv |
024 | 7 | _ | |a 2128/16987 |2 Handle |
024 | 7 | _ | |a WOS:000407196900001 |2 WOS |
024 | 7 | _ | |a altmetric:19017404 |2 altmetric |
037 | _ | _ | |a FZJ-2018-01063 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Placke, B. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a A model study of present-day Hall-effect circulators |
260 | _ | _ | |a Berlin |c 2017 |b Springer Open |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1517487735_8241 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the $S$ parameters of the device when coupled to 50$\Omega$ ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction $\nu$ of 20), the Hall angle $\theta_H=\tan^{-1}\sigma_{xy}/\sigma_{xx}$ always remains close to $90^\circ$, and the $S$ parameters are close to the analytic predictions of VD for $\theta_H=\pi/2$. As anticipated by VD, MEA find the device to have rather high (k$\Omega$) impedance, and thus to be extremely mismatched to $50\Omega$, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. $\nu=20$, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects. |
536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to arXivarXiv, CrossRef |
700 | 1 | _ | |a Bosco, S. |0 0000-0002-4035-9654 |b 1 |
700 | 1 | _ | |a DiVincenzo, David |0 P:(DE-Juel1)143759 |b 2 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1140/epjqt/s40507-017-0057-9 |g Vol. 4, no. 1, p. 5 |0 PERI:(DE-600)2784501-1 |n 1 |p 5 |t EPJ Quantum Technology |v 4 |y 2017 |x 2196-0763 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:842890 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)143759 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|