001     842890
005     20210129232513.0
024 7 _ |a 10.1140/epjqt/s40507-017-0057-9
|2 doi
024 7 _ |a arXiv:1609.09624
|2 arXiv
024 7 _ |a 2128/16987
|2 Handle
024 7 _ |a WOS:000407196900001
|2 WOS
024 7 _ |a altmetric:19017404
|2 altmetric
037 _ _ |a FZJ-2018-01063
082 _ _ |a 530
100 1 _ |a Placke, B.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A model study of present-day Hall-effect circulators
260 _ _ |a Berlin
|c 2017
|b Springer Open
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1517487735_8241
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the $S$ parameters of the device when coupled to 50$\Omega$ ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction $\nu$ of 20), the Hall angle $\theta_H=\tan^{-1}\sigma_{xy}/\sigma_{xx}$ always remains close to $90^\circ$, and the $S$ parameters are close to the analytic predictions of VD for $\theta_H=\pi/2$. As anticipated by VD, MEA find the device to have rather high (k$\Omega$) impedance, and thus to be extremely mismatched to $50\Omega$, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. $\nu=20$, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to arXivarXiv, CrossRef
700 1 _ |a Bosco, S.
|0 0000-0002-4035-9654
|b 1
700 1 _ |a DiVincenzo, David
|0 P:(DE-Juel1)143759
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1140/epjqt/s40507-017-0057-9
|g Vol. 4, no. 1, p. 5
|0 PERI:(DE-600)2784501-1
|n 1
|p 5
|t EPJ Quantum Technology
|v 4
|y 2017
|x 2196-0763
856 4 _ |u https://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842890/files/s40507-017-0057-9.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:842890
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)143759
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21