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Abstract

Stimulated by the recent implementation of a three-port Hall-effect microwave

circulator of Mahoney et al. (MEA), we present model studies of the performance of

this device. Our calculations are based on the capacitive-coupling model of Viola and

DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained

from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve

the coupled field-circuit equations to calculate the expected performance of the

circulator, as determined by the S parameters of the device when coupled to 50�

ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5 T,

for which a typical 2DEG enters the quantum Hall regime (corresponding to a

Landau-level filling fraction ν of 20), the Hall angle θH = tan–1 σxy/σxx always remains

close to 90°, and the S parameters are close to the analytic predictions of VD for

θH = π /2. As anticipated by VD, MEA find the device to have rather high (k�)

impedance, and thus to be extremely mismatched to 50�, requiring the use of

impedance matching. We incorporate the lumped matching circuits of MEA in our

modeling and confirm that they can produce excellent circulation, although confined

to a very small bandwidth. We predict that this bandwidth is significantly improved

by working at lower magnetic field when the Landau index is high, e.g. ν = 20, and

the impedance mismatch is correspondingly less extreme. Our modeling also

confirms the observation of MEA that parasitic port-to-port capacitance can produce

very interesting countercirculation effects.
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1 Introduction

The circulator is an important component of modern low-temperature microwave engi-

neering. It is essential for several applications, including the measurement and control of

solid state qubits [, ] to thermal noise exclusion []. An ideal circulator is a lossless non-

reciprocal three-port device that cyclically routes a signal to the next port. Its behavior is

captured by the scattering (S) matrices []

S� =







  

  

  






and S� =







  

  

  






, ()

where the arrows indicate the direction of circulation. Both senses of rotation will be rel-

evant in the present work. The conventional way of implementing passive circulators ex-
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ploits the classical Faraday effect [–]. Although these devices can be very efficient in

terms of loss, in the microwave regime they are quite bulky, with a physical scale on the

order of centimeters. In fact, this construction has a fundamental scalability issue: since it

relies on a wave-interference phenomenon, the minimum size is set by the wavelength at

which they operate.

Recently, Viola and DiVincenzo (VD) proposed an alternative implementation for a pas-

sive circulator, which points the way towards better scalability []. The main message of

their work is that non-reciprocal electrical conduction can lead to well-performing non-

reciprocal devices. In particular, ideal circulation at specific frequencies is achieved by

reactively coupling electrodes to the edges of a two-dimensional conductor such as a two-

dimensional electron gas (DEG) with a strong Hall effect. By the construction of Carlin

[–], a DEG with three capacitively coupled edge terminals becomes a three-port cir-

culator when the common grounds of the three ports are kept out of contact with the Hall

conductor (i.e., the DEG should float with respect to the port ground).

The model proposed by VD applies for any values of Hall conductance, requiring the

solution of coupled field-circuit equations. However, the results presented by VD were

limited to the case when the Hall angle θH ≡ tan
– σxy/σxx is exactly at its maximal value

π/, corresponding to parameter values (magnetic field, carrier density) for which the

material conductance is on a quantumHall plateau and the Landau level filling parameter

ν is an integer. Under these conditions the VD equations are solvable in closed form; for

the more general case considered here, a numerical solution is needed. These solutions,

and their consequences for the device S parameters, will be presented below.

An experimental realization of aHall effectmicrowave circulator has now been reported

by Mahoney et al. (MEA) []. MEA observes that impedance matching and parasitic ca-

pacitive coupling between neighboring ports play a key role for the behavior of their cir-

culator. Impedance matching is essential to achieve good circulation, and the appropriate

level of parasitic capacitance has the surprising consequence of inverting the direction

of circulation in going from one magnetic field or frequency to another. By engineering

the coupling between electrodes, this interesting property might be exploited for novel

applications, where tiny changes of field could reverse the direction of circulation.

The present work is developed in light of MEA’s results. First, we employ the VDmodel,

solving the field problem of a three-port Carlin circulator with realistic values of Hall an-

gle obtained from typical DEG magnetoconductance characteristics. These characteris-

tics involve a low magnetic-field regime in which small oscillations in the diagonal and

off-diagonal conductances are observed (the Shubnikov-de Haas regime); as these oscilla-

tions grow to near % amplitude, one enters the quantumHall regime in which plateaus

occur in the off diagonal (σxy) conductance, and the Hall angle stays very near π/, oscil-

lating slightly away from this value as the conductance passes from plateau to plateau. We

see that our numerical calculations of the device performance are to a first approximation

given by the analytic results of VD throughout the quantum Hall regime, but with notice-

able departures from ideal behavior. We also incorporate in our calculations of the device

response a complete circuit description including the impedance matching circuit and

parasitic effects as reported byMEA.We find that impedancematching is essential for the

realization of circulation; without matching the reflection coefficient of the device is very

close to one, making the response very far from the desired behavior. We note, however,

the impedance matching limits the versatility of the device: matching can be effectively



Placke et al. EPJ Quantum Technology  ( 2 0 1 7 )  4 : 5  Page 3 of 14

Figure 1 Three-terminal capacitively coupled Hall

bar. Three metal electrodes of length L = 1 mm are

capacitively coupled to a square Hall bar. The electrodes

are symmetrically placed around the perimeter of the

device, parametrized by s, and they are separated by a

gap sp = L/3 = 0.33 mm. The convention of currents and

voltages is shown in the plot.

performed only for specific combinations of parameters, i.e., for specific frequencies or

magnetic fields.

Our paper is organized as follows. In Section , we compute the S parameters of an ideal

Carlin circulator, when the device and the external circuit have equal impedance. In Sec-

tion , we incorporate impedance matching circuits optimized for two specific magnetic

fields and we study the response in the two cases. In Section , we include the parasitic

coupling between electrodes: we confirm the magnetic field dependent change in the di-

rection of circulation observed in [] and we quantitatively analyze this phenomenon.

2 Basic analysis

The geometry considered throughout this work is shown in Figure . We consider a two-

dimensional material lying in the (x, y)-plane subject to a uniform perpendicularmagnetic

field B. Three electrodes of equal length L are capacitively coupled to the material and

they are symmetrically distributed around its boundary, parametrized by coordinate s.

This three-electrode device forms a circulator of the “first Carlin” type []. To model this

circulator, we follow VD []; we assume that the capacitors are much longer than the gaps

between them, also corresponding to the geometry of MEA. The VD model neglects any

capacitances except for the external electrode capacitors, which should be reasonable for

the aspect ratios used here. The work of VD also indicates that for Hall angle θH � π/,

the device response should be sensitive only to the edge dimensions and not to the shape

of the conductor. Thus, we do not expect any large differences between the square device

as modeled here and the circular device of MEA.

As a first step, we calculate the electric potentialV (x, y) inside the Hall conductor. In ho-

mogeneous Dmaterials, with no localized free charges,V (x, y) satisfies the -dimensional

Laplace equation [, ]

∇V (x, y) = . ()

This remains true in the presence of a magnetic field, as long as it is uniform, but this field

affects the boundary conditions of the Laplace equation, as we now describe.

The boundary conditionsmust account for the capacitive coupling to external electrodes

and for the deflection of electrons due to the applied magnetic field. In the frequency

domain, they can be stated as [], for excitations at frequency ω:

–σ n̂H · �∇V (s,ω) = iωc(s)
(

V (ω) –V (s,ω)
)

, ()
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where σ is the magnitude of the Hall conductivity tensor (assumed frequency indepen-

dent), n̂H is the unit vector rotated by θH with respect to the direction normal to the

boundary and V (ω) is the Fourier transform of the time-dependent voltages applied at

the electrodes. It is assumed that ω is low enough, and the device is small enough that

retardation effects are negligible, assuring the applicability of Eq. (). The phenomenolog-

ical function c(s) models the local coupling with the electrodes; it has the dimensions of

capacitance per unit length. In our treatment, it takes the form

c(s) =

{

c, |s – si – L/| ≤ L/,

, |s – si – L/| > L/,
with i = , , . ()

si is the position along the perimeter of the starting point of lead i. The parameter c can

be estimated for certain geometries from theory, e.g. [–], or directly extracted from

experiment. It has contributions fromboth classical electrostatic coupling and fromquan-

tum capacitance due to screening effects [–]. A rule of thumb is that quantum capaci-

tance starts to play an important role when the distance between electrodes and quantum

Hall droplet is comparable with the electron screening length. In MEA [], this condi-

tion is apparently not met, and we believe that the coupling is strongly dominated by the

classical geometric capacitance; this is no problem for the realization of a circulator.

Once the electric potential is found, all the relevant quantities are straightforwardly

computed. In particular, the current at the ith electrode is related to the boundary po-

tential by []

Ii(ω) = –σ

∫ si+L

si

dsn̂H · �∇V (s,ω). ()

From this relation, we readily obtain the admittance matrix of the device Yc by applying

harmonic drives at each electrode separately and using the superposition principle of lin-

ear circuit theory.

Finally, we convert the admittance matrix into a scattering (S) matrix using the relation

[]

S = (I – ZY )(I + ZY )
–, ()

with I being the identity matrix and Z being the characteristic impedance of the exter-

nal circuit. Exploiting the unitarity of S and comparing with Eq. (), one can establish a

criterion [] to quantify the circulating behavior of the device:

Q� ≡ |S| + |S| + |S| ≤ , (a)

Q� ≡ |S| + |S| + |S| ≤ , (b)

where the equality corresponds to perfect circulation in the direction of the arrow. When

the equality is not met, a fraction of the signal is reflected back or circulates in the oppo-

site direction, and the device partially looses its chirality. To quantify this effect, we show

in Figure  a scatter plot that relates the parameters Q� and Q� obtained from a set of

randomunitary S-matrices. From this figure, it appears that even tiny variations ofQ from
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Figure 2 Relation between Q� and Q� . The

scatter plot was generated by computing the two

Q-parameters of a set of random unitary S-matrices.

The solutions at the corners (0, 0), (0, 3) and (3, 0) exist

(for example, they are obtained respectively from I ,

S� and S�); they do not appear in the plot as they

are statistically not likely to occur in a set of random

Smatrices. In addition, the point (2, 2) is the

well-known upper bound for reciprocal 3× 3

S-matrices, see, e.g. Section 4.9 of [7].

Figure 3 Magnetic field dependence of the components of the resistivity tensor for a typical 2DEG

heterostructure (InGaAs/InP) at T = 4 K. For magnetic fields greater than 1.5 T, the resistivity develops

plateau regions characteristic of the quantum Hall regime, where ρxy is constant and the diagonal element

ρxx goes to zero. This data shows negligible evidence of the fractional quantum Hall effect.

 can lead to a significant backward circulation and consequently to a noticeable loss of

chirality, e.g. for Q� = ., Q� can attain a value as large as .

Taking the limit θH → π/ in Eq. (), the equation for the potential along the perimeter

decouples from the bulk. VD found an analytic solution for this boundary problem [] and

they showed that the device in Figure  then behaves as an ideal circulator at frequencies

ωc = π
σ

cL
( + n), n ∈N, ()

when the voltage of the three electrode is referenced to a common ground and when the

device is perfectly matched, i.e. the external circuit equals the impedance of the circulator

Z = Rc ≡ (σ )–.

The θH < π/ case is difficult to deal with analytically as the boundary potential couples

with the bulk potential. Therefore, we have computed a finite-difference numerical solu-

tion for the Laplace equation. In all the following simulations, we used cL =  fF, which

agrees with estimated parameters in the recent experiment of MEA [], L =  mm and the

spacing between the electrodes sp = . mm. Moreover, we extracted σ and θH from the
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Figure 4 Q-parameters of a perfectly matched three terminal circulator. The device geometry is shown

in Figure 1, and we use a capacitance cL = 50 fF; the magnitude of the conductivity tensor σ =
√

σ 2
xx + σ 2

xy

and the Hall angle θH are extracted from the experimental data in Figure 3. Along the blue lines,

corresponding to Eq. (8), the value Q� = 3 is exactly attained in the limit θH = π /2, giving perfect circulation

in the anticlockwise direction. We indicate the plateaus corresponding to filling factors ν = 20 and ν = 8,

where impedance matching will be performed.

experimental data shown in Figure ; this data, which is entirely generic for heterostruc-

ture DEGs, is taken from a device used in the advanced (masters) physics lab course of

the second physics institute of Aachen University.a Figure  shows the Q-parameters as

a function of frequency and magnetic field for a perfectly matched device (note that per-

fect matching requires a magnetic field dependent Z). From the plot, we confirm that at

the frequency in Eq. () almost perfect circulation in the anticlockwise direction can be

achieved. Comparing with Figure , we notice that the highest values of Q are obtained at

magnetic fields corresponding to the quantum Hall plateau, but good circulating perfor-

mances are guaranteed also in the transition regions and in the Shubnikov-deHaas regime.

In particular, we observe that in the latter regime the device has a greater bandwidth.
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Figure 5 Augmented network used for impedance matching and including the parasitic capacitances

that couple the three terminals. The impedance of each port is separately matched to the one of the

circulator by LC-circuits, as proposed in [9].

The perfectly matched circulator described here is unfortunately a purely theoretical

device. In the quantum Hall regime, the impedance of the device is

Rc =
h

eν
≈

.k�

ν
, ()

with ν being the filling factor [], far greater than the characteristic impedance of stan-

dardmicrowave circuits Z = �. Thus, use of impedance matching techniques is essen-

tial.

3 Augmented network for impedancematching

To have a more realistic picture of the performance of the device, we include lumped-

element impedance matching circuits as suggested by MEA. We focus our analysis on

the augmented network shown in Figure , as proposed in []. Simple LC-circuits at each

port are used to match the impedance of the device with the external circuit. This net-

work, like any impedance-matching circuit, has the drawback of working only at specific

frequencies ωm, limiting the versatility of the circulator. Figure  also shows parasitic ca-

pacitances coupling each pair of neighboring electrodes, as suggested by MEA. We will

neglect these for the time being, returning to their analysis in the following section. From

standard circuit theory (see Chapter  of []), one can write the admittance matrix of the

augmented device

Ya =
(

iωLmI + (iωCmI + Yc)
–

)–
. ()
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Figure 6 Q-parameters of a three-port circulator, matched to the external impedance of 50�. The

matching is optimized for filling factor ν = 8; here, we neglect the parasitic coupling between electrodes.

Comparing with Figure 4, good circulation is achieved only at the magnetic fields corresponding to ν = 8, and

the bandwidth of the device shrinks notably due to the high impedance mismatch to be overcome.

The values of Lm and Cm are fixed by the standard design formulas (Chapter . of [])

Cmωm =


Z

√

 –
Z

Rc

, (a)

Lmωm = Z

√

 –
Z

Rc

, (b)

We will take Z = � as the characteristic impedance of the standard transmission sys-

tem. According to equation (), the impedance of the circulator Rc depends on the filling

factor ν . Hence, the impedance matching circuit works only for specific filling factors,

setting an additional constraint on the regime of parameters which guarantees good cir-

culation.
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Figure 7 Q-parameters of a three-port circulator, matched to the external impedance of 50�. The

matching is optimized for filling factor ν = 20; here, we neglect the parasitic coupling between electrodes.

Comparing with Figure 6, the bandwidth is greater, but the circulation performance decreases as the

Shubnikov-de Haas regime is approached.

Figure  shows a plot of the Q-parameters when the matching is optimized for filling

factor ν =  and for the first circulation frequency, i.e. ωm = ωc(n = ). As expected, the

device behaves as the theoretical perfectlymatched device, in Figure , only near the filling

factor and frequency at which the matching is performed. For the parameters needed for

good impedance matching, the effective bandwidth of the device is limited, as expected

given the very large mismatch to be overcome.

Since the bandwidth of the impedance matching circuits increases if Z/Rc can be de-

creased, the bandwidth of the circulator can be improved bymatching the device at higher

filling factor. Figure  shows the performance of a device matched at ν = . The band-

width of this device is clearly greater than in Figure . However, as we approach the

Shubnikov-de Haas regime at lowmagnetic field, where the magnetoconductance oscilla-

tions become weak and the Hall angle decreases, the maximum value of the Q-parameter
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Figure 8 Effects of parasitics on the Q-parameters of a three-port circulator. The circulator is matched

to the external impedance of 50� and the matching is optimized for filling factor ν = 8. We used here

Cp = 2 fF. As the parasitic capacitances are very small, their effect on the response is negligible, see Figure 6.

decreases. Hence, when engineering the device there is a trade-off between bandwidth

and circulation performance to be accounted for.

4 Effect of parasitic capacitances

We now extend the analysis to include the effect of the parasitic capacitances of Figure .

We assume three equal capacitances with value Cp. The augmented-network analysis of

the new admittance matrix gives the formula

Ya =
(

iωLmI +
(

iωCmI + iωCp(I – S� – S�) + Yc

)–)–
. ()

We will consider the ν =  case, examining different values of Cp. Figure  shows the

results when Cp =  fF. This parasitic component is evidently very small and its effect

is negligible, as one can see comparing with Figure . Qualitatively, the parasitic capaci-
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Figure 9 Effects of parasitics on the Q-parameters of a three-port circulator. The circulator is matched

to the external impedance of 50� and the matching is optimized for filling factor ν = 8. We used here

Cp = 120 fF. The currents carried by the parasitic capacitances and the direct channels are comparable, thus

interference effects occur and reversed circulation is strongly enhanced.

tances start to influence the device response when /Rc and ωCp are of the same order of

magnitude, since then the parasitic and the direct channels carry currents of equal mag-

nitude, which can then interfere with one another. In our case, this condition corresponds

to Cp ≈ σ /ω ≈  fF for the first circulation frequency. Figure  shows Q-parameters

for the realistic parasitic coupling value Cp =  fF. The surprising effect of the addi-

tional capacitive channels is to introduce significant circulation in the reverse direction,

as experimentally observed in []. The direction of circulation becomes magnetic-field

dependent and is seen to change in the vicinity of the curve defined by ω = ωc(n = ). In-

terestingly, for the parameters chosen, both circulators behave almost equally well, with a

maximum ofQmax

� = . andQmax

� = .. Finally, for significantly larger values of the par-

asitic capacitances, they dominate the device response and circulation in both directions

is suppressed, as shown in Figure .
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Figure 10 Effects of parasitics on the Q-parameters of a three-port circulator. The circulator is matched

to the external impedance of 50� and the matching is optimized for filling factor ν = 8. We used here

Cp = 500 fF. As the parasitics are much greater than the direct capacitors, they dominate the response, and

circulation is suppressed in both directions.

To gain more insight into the reverse circulation phenomenon, we investigate the de-

pendence of the Q-parameters on Cp. Figure  shows the maximum value of Q for the

two directions of circulation as a function of the parasitic coupling. Strikingly, reverse cir-

culation can be more effective (larger Q) than the direct one, and it degrades more slowly

as Cp increases. Finally, we observe that for certain coupling values, e.g. Cp ≈  fF, al-

most perfect circulation can be achieved in both directions (at different frequencies, of

course). This phenomenon might be exploited for novel applications, where tiny changes

of magnetic field can reverse the direction of circulation.

5 Conclusion

We have investigated an implementation of a quantum Hall effect circulator. We proved

that realistic variations of Hall angle occurring once the quantum Hall regime has been
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Figure 11 Maximum value of the Q-parameters as a function of the parasitic capacitance Cp . The

circulator is matched to the external impedance of 50� and the matching is optimized for filling factor ν = 8.

As expected, when the currents carried by the parasitic capacitances and the direct channels are comparable,

i.e. Cp ≈ 20 fF, circulation in the reversed direction is strongly enhanced. Interestingly, for certain values of Cp ,

e.g. Cp ≈ 40 fF, circulation is equally good in both directions; thus, tiny changes in the operating frequency of

the device can reverse the circulation direction.

entered (at around . T for the DEG considered) do not alter significantly the fundamen-

tal behavior of the device investigated in [], even for a large Landau-level index (ν = ).

Moreover, we addressed two importantmicrowave-engineering issues, impedancematch-

ing and parasitic capacitances. Although the presence of an impedance matching circuit

decreases the versatility of the device, we proved that the performance of the circulator can

be optimized either to have a large bandwidth or to operate in a large range of magnetic

field. Finally, analyzing the effect of parasitic capacitances, we observed a reverse circu-

lation phenomenon, expected from recent experiments []. Interestingly, we found that

depending on the coupling strength the reverse circulation is comparable and for certain

parameters even better than the direct one, opening up to new possible applications.
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