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Abstract

Spatiotemporal patterns such as traveling waves are frequently observed in recordings
of neural activity. The mechanisms underlying the generation of such patterns are
largely unknown. Previous studies have investigated the existence and uniqueness of
different types of waves or bumps of activity using neural-field models,
phenomenological coarse-grained descriptions of neural-network dynamics. But it
remains unclear how these insights can be transferred to more biologically realistic
networks of spiking neurons, where individual neurons fire irregularly. Here, we
employ mean-field theory to reduce a microscopic model of leaky integrate-and-fire
(LIF) neurons with distance-dependent connectivity to an effective neural-field model.
In contrast to existing phenomenological descriptions, the dynamics in this neural-field
model depends on the mean and the variance in the synaptic input, both determining
the amplitude and the temporal structure of the resulting effective coupling kernel. For
the neural-field model we derive conditions for the existence of spatial and temporal
oscillations and periodic traveling waves using linear stability analysis. We first prove
that periodic traveling waves cannot occur in a single homogeneous population of
neurons, irrespective of the form of distance dependence of the connection probability.
Compatible with the architecture of cortical neural networks, traveling waves emerge
in two-population networks of excitatory and inhibitory neurons as a combination of
delay-induced temporal oscillations and spatial oscillations due to distance-dependent
connectivity profiles. Finally, we demonstrate quantitative agreement between
predictions of the analytically tractable neural-field model and numerical simulations
of both networks of nonlinear rate-based units and networks of LIF neurons.

Author summary

Effective coarse-grained models are often developed to capture the dynamics of
complex systems composed of large numbers of interacting units. Mapping the
microscopic level to simplified coarse-grained equations facilitates analytical
predictions of the large-scale dynamics. A prerequisite for this approach is a
quantitative relationship between both levels of description. Here, we explore the
origin of wave-like phenomena in measured brain activity by deriving such a
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relationship between a network of biologically motivated spiking neurons and a
neural-field model. Using the neural-field model, we derive conditions for the existence
of periodic traveling waves based on the widths of spatial connectivity profiles and
transmission delays. The explicit link between the two models delivers a recipe for the
construction of spatial connectivity profiles that support traveling waves in networks
of spiking neurons with sufficiently large transmission delays.

1 Introduction

Experimental recordings of neural activity frequently reveal spatiotemporal patterns
such as traveling waves propagating across the cortical surface [1–8] or within other
brain regions such as the thalamus [3, 9] or the hippocampus [10]. These large-scale
dynamical phenomena are detected in local-field potentials (LFP) [11] and in the
spiking activity [12] recorded with multi-electrode arrays, by voltage-sensitive dye
imaging [13], or by two-photon imaging monitoring the intracellular calcium
concentration [14]. They have been reported in in-vitro and in in-vivo experiments, in
both anesthetized and awake states, and during spontaneous as well as
stimulus-evoked activity [3].

Previous modeling studies have shown that networks of spiking neurons with
distance-dependent connectivity, extending in one- or two-dimensional space, can
exhibit a variety of such spatiotemporal patterns [15–18]. For illustration, consider the
example in Fig 1. Depending on the choice of transmission delays, the spatial reach of
connections and the strength of inhibition, a network of leaky integrate-and-fire (LIF)
model neurons generates asynchronous-irregular activity (A), spatial patterns that are
persistent in time (B), spatially uniform temporal oscillations (C), or propagating
waves (D). Distance-dependent connectivity is a prominent feature of biological
networks. In the neocortex, local connections are established within a radius of about
500µm around a neuron’s cell body [19], and the probability of two neurons being
connected decays with distance [20–22].

So far, the formation of spatiotemporal patterns in neural networks has mainly
been studied by means of phenomenological neural-field models describing network
dynamics at a macroscopic spatial scale [23–25]. Such models can describe patterns in
recorded brain activity that are related to movement [26] or occur in response to a
visual stimulus [27]. Neural-field models are formulated with continuous nonlinear
integro-differential equations for a spatially and temporally resolved activity variable
and usually possess an effective distance-dependent connectivity kernel. These models
provide insights into the existence and uniqueness of diverse patterns which are
stationary or nonstationary in space and time, such as waves, wave fronts, bumps,
pulses, and periodic patterns (reviewed in [28–34]). There are two main techniques for
analyzing spatiotemporal patterns in neural-field models [32]: First, in the
constructive approach introduced by Amari [25], bump or wave solutions are explicitly
constructed by relating the spatial and temporal coordinates of a nonlinear system
(reviewed in [28, Section 7] and [32, Sections 3-4]). Second, the emergence of periodic
patterns is studied with bifurcation theory as in the seminal works of Ermentrout and
Cowan [35–38]. In this latter framework, linear stability analysis is often employed to
detect pattern-forming instabilities and to derive conditions for the onset of pattern
formation (see for example [39, 40] or the reviews [28, Section 8] and [32, Section 5]).
There are four general classes of states that can linearly bifurcate from a homogeneous
steady state: a new uniform stationary state, temporal oscillations (spatially uniform
and periodic in time, also known as global ‘bulk oscillations’ [41]), spatial oscillations
(spatially periodic and stationary in time), and periodic traveling waves (spatially and
temporally periodic), see [28, Section 8] and [42–44]. The analysis of these states is
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Figure 1. Spatiotemporal patterns in a spiking neural network model.
Spiking activity of recurrently connected populations of excitatory (E, blue) and
inhibitory (I, red) leaky integrate-and-fire neurons. Each dot represents the
spike-emission time of a particular neuron. Neurons within each population are
equally spaced on a ring with perimeter of 1mm. Each neuron receives a fixed number
of incoming connections from its excitatory (inhibitory) neighbors uniformly and
randomly drawn within a distance of RE (RI). The spike-transmission delay d, the
widths RE and RI of the spatial connectivity profiles, and the relative inhibitory
synaptic weight g are varied. A Asynchronous-irregular activity (d = 1ms,
RE = RI = 0.4mm, g = 6). B Oscillations in space (d = 3ms, RE = 0.1mm,
RI = 0.15mm, g = 5). C Oscillations in time (d = 6ms, RE = RI = 0.4mm, g = 7).
D Propagating waves (d = 3ms, RE = 0.2mm, RI = 0.07mm, g = 5). For remaining
parameters, see Fig 12.

often called ‘(linear) Turing instability analysis’ [29, 44, 45] referring to the work of
Turing on patterns in reaction-diffusion systems [46]. The respective instabilities
leading to these states are termed: a firing rate instability, Hopf instability [47],
Turing instability, and Turing-Hopf [42] or ‘wave’ [40] instability. The instabilities
generating temporally periodic patterns (Hopf and Turing-Hopf instabilities) are
known as ‘dynamic’ [44] or ‘nonstationary’ [48] instabilities, in contrast to ‘static’ [44]
or ‘stationary’ [48] instabilities generating temporally stationary patterns. The
emergence of pattern-forming instabilities has been investigated with respect to
system parameters such as the spatial reach of excitation and inhibition in an effective
connectivity profile [28]; specifically without transmission delays [49, 50], or with
constant [42, 51], distance-dependent [40, 41, 43, 45, 52–56] or both types [57, 58] of
delays.

Neural-field models treat neural tissue as a continuous excitable medium and
describe neural activity in terms of a space and time dependent real-valued quantity.
Throughout the current work the spatial coordinate refers to physical space, although
in general it could also be interpreted as feature space. At the microscopic scale, in
contrast, neural networks are composed of discrete units (neurons) – which interact
via occasional short stereotypical pulses (spikes) rather than continuous quantities like
firing rates. In the neocortex, spiking activity is typically highly irregular and
sparse [59, 60], with weak pairwise correlations [61]. To date, a rigorous link between
this microscopic level and the macroscopic description by neural-field models is
lacking [31, 33, 62, 63]. While randomly connected spiking networks have been
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extensively analyzed using mean-field approaches [60, 64–66], the theoretical
understanding of spatially structured spiking networks is still deficient. Hence, it
remains unclear how to qualitatively transfer insights on the formation of
spatiotemporal patterns from neural fields to networks of spiking neurons. Moreover,
it is unknown how the multitude of neuron, synapse and connectivity parameters of
spiking neural networks relates to the effective parameters in neural-field models. A
quantitative link between the two levels of description is, for example, required for
adjusting parameters in a network of spiking neurons such that it generates a specific
type of spatiotemporal pattern, and to enable model validation by comparison with
experimental data.

Different efforts have already been undertaken to match spiking and
time-continuous rate models with spatial structure. Certain assumptions and
approximations allow the application of techniques for analyzing spatiotemporal
patterns developed for neural-field models. The above mentioned constructive
approach [25], for example, can be applied to networks of spiking neurons under the
assumption that every neuron spikes at most once, thus ignoring the sustained spike
generation and after-spike dynamics of biological neurons [67–69]. A related
simplification substitutes a spike train by an ansatz for a wave front. This leads to a
mean-field description of single-spike activity often applied to a spike-response
model [70–73]. Traveling-wave solutions have also been proposed for a network of
coupled oscillators and a corresponding continuum model [74]. In the framework of
bifurcation theory, Roxin et al. [42, 51] demonstrate a qualitative agreement between a
neural-field model and a numerically simulated network of Hodgkin-Huxley-type
neurons in terms of emerging spatiotemporal patterns. However, the authors do not
observe stable traveling waves in the spiking network, even though the neural-field
model predicts their occurrence. In the limit of slow synaptic interactions, spiking
dynamics can be reduced to a mean-firing-rate model for studying bifurcations [75–77].
An example is the lighthouse model [78, 79], defined as a hybrid between a phase
oscillator and a firing-rate model, that reduces to a pure rate model for slow
synapses [80]. Laing and Chow [81] demonstrate a bump solution in a spiking network
and discuss a corresponding rate model. Recently, the group around Doiron and
Rosenbaum explored in a sequence of studies spatially structured networks of LIF
neurons without transmission delays in the continuum limit with respect to the spatial
widths of connectivity. The authors focus on the existence of the balanced state [82],
the structure of correlations in the spiking activity [83], and bifurcations in the
linearized dynamics in relation to network computations [84]. Kriener et al. [85]
employ static mean-field theory and extend the linearization of a network of LIF
neurons with constant delays as described by Brunel [65], to spatially structured
networks. The work derives conditions for the appearance of spontaneous symmetry
breaking that leads to stationary periodic bump solutions (spatial oscillations), and
distinguish between the mean-driven and the fluctuation driven regime.

Despite these previous works on spatially structured network models of spiking
neurons and attempts to link them with neural-field models, there still exists no
systematic way of mapping parameters between these models. Furthermore, none of
these studies focuses on uncovering the underlying mechanism of periodic traveling
waves in spiking networks. In the present work we establish the so far missing,
quantitative link between a sparsely connected network of spiking LIF neurons with
spatial structure and a typical neural-field model. An explicit parameter mapping
between the two levels of description allows us to study the origin of spatiotemporal
patterns analytically in the neural-field model using linear stability analysis, and to
reproduce the predicted patterns in spiking activity. We employ mean-field theory to
derive the neural-field model as an effective rate model depending on the dynamical
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parameter mapping

derive conditions for periodic traveling waves with analytically
tractable neural-field model that hold for spiking model

derive effective neural-field model from spiking model
via mean-field approximation and spatial averaging

theory for
linearized system

network simulation

neural-field
model
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model
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   units

mean-field   
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discrete
space

continuous
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Figure 2. Mapping microscopic single-neuron dynamics to spatially
averaged population dynamics. (1) Conditions for periodic traveling waves in a
neural-field model. (2) Network simulation of discrete nonlinear rate neurons.
(3) Mean-field approximation of the spiking model and spatial averaging lead to an
effective linearized continuous system. (4) Parameter mapping between spiking and
neural-field model. (5) Network simulation of spiking neurons and validation of
analytical results.

working point of the network that is characterized by both the mean and the variance
of the synaptic input. The rate model accounts for biological constraints such as a
static weight that is either positive (excitatory) or negative (inhibitory) and a spatial
profile that can be interpreted as a distance-dependent connection probability. Given
these constraints, we show that periodic traveling waves cannot occur in a single
homogeneous population irrespective of the shape of distance-dependent connection
probability. For two-population networks of excitatory and inhibitory neurons, in
contrast, traveling waves emerge for specific types of spatial profiles and for
sufficiently large delays, as shown in Fig 1D.

The remainder of the study is structured as follows: In Results we derive the
conditions for the existence of periodic traveling waves for a typical neural-field model
by linear stability analysis, present an effective model corresponding to the
microscopic description of spiking neurons, compare the two models, and show
simulation results for validation. In Discussion we put our results in the context of
previous literature. Finally, Methods contains details on our approach. An account of
the presented work has previously been published in abstract form in [86].

2 Results

We aim to establish a mapping between two different levels of description for spatially
structured neural systems to which we refer as ‘neural-field model’ and ‘spiking model’
based on the initial model assumptions. While the neural-field model describes neural
activity as a quantity that is continuous in space and time, the spiking model assumes
a network of recurrently connected spiking model neurons in discrete space. Our
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methodological approach for mapping between these two models, as well as the
structure of this Section, are illustrated in Fig 2. (1) We start in Sections 2.1-2.3 with
linear stability analysis of a typical neural-field model that is a well-known and
analytically tractable rate equation. This approach builds on existing literature
(cf. [28, Section 8] and [32, Section 5]) and introduces the concepts of our study with
modest mathematical efforts. We analyze the neural-field model for one and two
populations and derive conditions for the occurrence of periodic traveling waves based
on spatial connectivity profiles and transmission delays. (2) In Section 2.4 we continue
with simulations of a discrete version of the neural-field model, a network of nonlinear
rate-based units, and show that the results from our linear analysis indeed accurately
predict transitions between network states (homogeneously steady, spatial oscillations,
temporal oscillations, waves). (3) Then, in Section 2.5 we linearize the population
dynamics of networks of discrete spiking leaky integrate-and-fire (LIF) neurons using
mean-field theory and derive expressions similar to the neural-field model. (4) Thus,
both the linearized neural-field and spiking models can be treated in a conceptually
similar manner, with the exception of an effective coupling kernel which is
mathematically more involved for the spiking model. In Section 2.6 we perform a
parameter mapping between the biophysically motivated parameters of the spiking
model and the effective parameters of a neural-field model. (5) Finally, in Section 2.7
we demonstrate that the insights obtained in the analysis of the neural-field model
apply to networks of simulated LIF neurons: The bifurcations indeed appear at the
theoretically predicted parameter values.

In summary, the mapping of a microscopic spiking network model to a continuum
neural-field model (bottom up) allows us to transfer analytically derived insights from
the neural-field model directly to the spiking model (top down).

2.1 Linear stability analysis of a neural-field model

We first consider a neural-field model with a single population defined as a continuous
excitable medium with a translation-invariant interaction kernel and delayed
interaction in one spatial dimension. The dynamics follows an integro-differential
equation

τ
du

dt
(x, t) + u (x, t) =

∫ ∞

−∞
P (x− y) ψ (u (y, t− d)) dy. (1)

The variable u describes the activity of the neural population at position x at time t.
Here τ > 0 denotes a time constant and d > 0 a transmission delay. The function ψ
describes the nonlinear transformation of the output activity u if considered as input
to the neural field. The function P specifies the translation-invariant connectivity
depending only on the displacement r = x− y where x and y denote neuron positions.
Earlier studies show that specific choices for connectivities P and nonlinear
transformations ψ result in spatiotemporal patterns such as waves or bumps [28–34].

Here, we assume that the connectivity P is isotropic and define P (r) := w p (r).
The scalar weight w can either be positive (excitatory) or negative (inhibitory). The
spatial profile p(r) is a symmetric probability density function with the properties
p (r) = p (−r), p(r) > 0 for r ∈ (−∞,∞) and

∫∞
−∞ p (r) dr = 1. Fig 3A shows, as an

example, a boxcar-shaped spatial profile with width R, defined by
p (r) = 1

2RΘ(R− |r|) where Θ denotes the Heaviside function.
Throughout this study we investigate bifurcations of the system Eq 1 between a

state of spatially and temporally homogeneous activity u(x, t) = u0 to states where the
activity shows structure in the temporal domain, in the spatial domain, or both. For
this purpose we use Turing instability analysis [29,39,40]. Initially we assume that the
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Figure 3. Effective profile yields conditions for traveling waves.
A Boxcar-shaped spatial profile p of width R = 1mm for a single population.
B Effective profile P̂ (blue curve) denotes Fourier transform of spatial profile p̂ times

positive weight wE = 1. Gray crosses indicate maximum P̂max and minimum P̂min.
Same spatial profile but with negative weight (wI = −wE) yields mirrored curve (red,
dashed line). C Spatial profiles of different widths for two populations E (RE = 1mm,

blue) and I (RI = 0.5mm, red). D Effective profile: P̂ (k) = wEp̂E (k) + wIp̂I (k).

E Transition curve P̂ crit
min(τ/d

crit) given by Eq 10 for Hopf bifurcation indicating onset
of delay-induced oscillations (appearing in purple region) with time constant τ and
delay d. F Transition curves for relative width ρ = RI/RE and relative weight

η = −wI/wE. Colored regions indicate which extremum, the minimum P̂min or the

maximum P̂max, has larger absolute value and if the dominant one occurs at k = 0 or
at k > 0. (1, purple): P̂min appears at kmin > 0. (2, light blue): P̂min appears at

kmin = 0. (3, dark gray): P̂max appears at kmax = 0. (4, green) P̂max appears at
kmax > 0.

model parameters are chosen such that the homogeneous solution is locally
asymptotically stable, implying that small perturbations away from u0 will relax back
to this baseline. We ask the question: In which regions of the parameter space (R, d,
w, ψ) is the stability of the homogeneous solution lost? To this end we linearize
around the steady state and denote deviations δu(t) = u(t)− u0. Without loss of
generality we assume the slope ψ′(u0) of the gain function to be unity; a non-zero
slope can be absorbed into a redefinition of w. Because the resulting system is linear
and invariant with respect to translations in time and space, its eigenmodes are
Fourier-Laplace modes of the form

δu (x, t) = eikxeλt, (2)

where the wave number k ∈ R is real and the temporal eigenvalue λ ∈ C is complex.
Solutions constructed from these eigenmodes can oscillate in time and space, and
exponentially grow or decay in time. The characteristic equation (see Eq 31 in
Methods)
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(1 + τλ) eλd = P̂ (k) , (3)

comprises the effective profile P̂ (k) := wp̂ (k). The Fourier transform of the spatial
profile is denoted by p̂ (k) which, by its definition as a probability density, is maximal
at k = 0 with p̂ (0) = 1 (see Eqs 38 and 39 in Methods). The effective profile for the
boxcar-shaped spatial profile is shown in Fig 3B, for excitatory and inhibitory weights
with absolute magnitudes of unity.

We next extend the system to two populations, an excitatory one denoted by E,
and an inhibitory one by I. Time constants τ and delays d are assumed to be equal for
both populations, but u becomes a vector, u = (uE, uI)

T , and the connectivity P (r) a
matrix

P (r) =

(
wEE pEE (r) wEI pEI (r)
wIE pIE (r) wII pII (r)

)
. (4)

The linearized system again possesses the same symmetries as the counterpart for a
single population so that the eigenmodes for the deviation from the stationary state
are of the form δu (x, t) = veikxeλt with v denoting a constant vector. Hence, we arrive
at an auxiliary eigenvalue problem (see Eq 32 in Methods) with the two eigenvalues

P̂1,2 (k) =
1

2

(
wEE p̂EE (k) + wII p̂II (k)±

√
D
)
, (5)

where

D =(wEE p̂EE (k) + wII p̂II (k))
2

− 4 (wEE p̂EE (k) wII p̂II (k)− wEI p̂EI (k) wIE p̂IE (k)) .
(6)

These two eigenvalues play the same role as the effective profile P̂ in the
one-population case above. As a consequence, the same characteristic equation Eq 3
holds for both the one- and the two-population system.

In the following example we restrict the weights and the spatial profiles to be
uniquely determined by the source population alone, denoted by wαE =: wE, wαI =: wI

for α ∈ {E, I}. An illustration of the two spatial profiles of different widths RE and RI

is shown in Fig 3C. The respective effective profile Eq 5 reducing to
P̂ (k) = wEp̂E (k) + wIp̂I (k) is shown in Fig 3D.

The characteristic equation Eq 3 can be solved for the eigenvalues λ by using the
Lambert W function defined as z =W (z) eW (z) for z ∈ C [87]. The Lambert W
function has infinitely many branches, indexed by b, and the branch with the largest
real part is denoted the principle branch (b = 0), see Eqs 35-36 in Methods for a proof.
The characteristic equation determines the temporal eigenvalues (see Eq 37 in
Methods and compare with [58])

λb(k) = − 1

τ
+

1

d
Wb

(
P̂ (k)

d

τ
e

d
τ

)
. (7)

2.2 Conditions for spatial and temporal oscillations, and

traveling waves

The homogeneous (steady) state of our system is locally asymptotically stable if the
real parts of all eigenvalues λb are negative

Re

[
Wb

(
P̂ (k)

d

τ
e

d
τ

)]
<
d

τ
, (8)
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for all branches b of the Lambert W function. The system loses stability when the real
part of the eigenvalue λ0 on the principle branch becomes positive at a certain k = k∗.
Such instabilities may occur either for a positive or a negative argument of the
Lambert W function.

We denote the maximum of P̂ as P̂max and the minimum as P̂min occurring at kmax

and kmin, respectively, as indicated in Fig 3B and D. The system becomes unstable for

a positive argument of W if P̂max = 1 where Re
[
W0

(
d
τ e

d
τ

)]
= d

τ by the definition of

the Lambert W function; so equality holds in Eq 8 independent of the values d and τ .
The imaginary part of λ0 is zero at such a transition. If the instability appears at a
wave number k∗ = 0, the population activity is collectively destabilized. This
transition corresponds in networks of binary neurons and of spiking neurons to the
transition between the asynchronous irregular (AI) state and the synchronous regular
(SR) state, where the system ceases to be stabilized by negative feedback and leaves
the balanced state [65, 88]. If this transition appears at a wave number k∗ > 0, it
follows from Eq 2 that the activity shows spatial oscillations that grow exponentially
in time.

For a negative argument of W of less than −1/e, the eigenvalues Eq 7 come in
complex conjugate pairs. The real part of λ0 becomes positive if the condition

Re

[
W0

(
P̂min

d

τ
e

d
τ

)]
=
d

τ
(9)

is fulfilled with a negative P̂min < −1. Because the eigenvalues have non-zero
imaginary parts, this transition corresponds to a Hopf bifurcation and the onset of
temporal oscillations. The condition for this bifurcation has been derived
earlier [89, Eq 10]

dcrit

τ
=

π − arctan

(√
P̂ crit2
min − 1

)

√
P̂ crit2
min − 1

. (10)

Here, dcrit denotes the critical delay and P̂ crit
min a critical minimum of the effective

profile for points on the transition curve. The system is stable for P̂min > −1 for all
delays. For larger absolute values of P̂min, the bifurcation point is given by the critical
value of the ratio between the time constant and the delay, shown in Fig 3E. If the
transition occurs at k∗ = 0, temporal oscillations emerge in which all neurons of the
population oscillate in phase (‘bulk oscillations’ [41]). In spiking networks this Hopf
bifurcation corresponds to the transition from the AI regime to the state termed
‘synchronous irregular fast (SI fast)’ [60]. If the transition appears for k∗ > 0, spatial
and temporal oscillations occur simultaneously. This phenomenon is known as
‘periodic traveling waves’, see [28, Section 8] and [42–44]. For the case that the system

becomes unstable due to P̂max reaching unity, the transition curve in Fig 3E also
provides a lower bound P̂ crit

min(τ/d
crit) above which temporal oscillations do not occur

prior to the transition due to P̂max.
In summary, the system is stable if P̂max < 1 and P̂min > P̂ crit

min(τ/d
crit). For

transitions occurring at either P̂max = 1 or P̂min = P̂ crit
min(τ/d

crit) we distinguish
between solutions with k∗ = 0 or k∗ > 0. In Fig 4 we provide an overview of the
conditions for bifurcations leading to spatial, temporal, or spatiotemporal oscillatory
states. These conditions imply that a one-population neural-field model does not
permit traveling waves, which follows from the fact that the absolute value of p̂ is
strictly maximal at k = 0 (see Eqs 38-39 in Methods). For a purely excitatory

population (w > 0) the critical minimum P̂ crit
min(τ/d

crit) therefore cannot be reached

9/42



Senk et al. Conditions for traveling waves in spiking neural networks

homogeneous spatial oscillations temporal oscillations traveling waves

P̂max < 1 1 < 1 < 1

P̂min > P̂ crit
min > P̂ crit

min P̂ crit
min P̂ crit

min

d < dcrit < dcrit dcrit dcrit

k∗ - > 0 0 > 0

Figure 4. Conditions for the onset of spatial and temporal oscillations, and
traveling waves. Gray cells in each column indicate the conditions required for the
instability causing the bifurcation. White cells denote the conditions for the respective
other bifurcation not to occur. Last row indicates whether the bifurcation happens for
zero or nonzero wave number k∗. Here dcrit and P̂ crit

min, as defined in Eq 10 and shown
in Fig 3E, denote the critical delay and the minimum of the effective profile on the
transition curve for a Hopf bifurcation.

while keeping the maximum P̂max stable as P̂max >
∣∣∣P̂min

∣∣∣. For a purely inhibitory

population (w < 0), the condition kmin > 0 is not fulfilled because P̂min occurs at
k = 0 as p̂ has its global maximum at the origin.

For a neural-field model accounting for both excitation and inhibition, however, we
can select shapes and parameters of the spatial profiles, weights and the delay that
fulfill the conditions for the onset of traveling waves as demonstrated by example in
the next section.

2.3 Application to a network with excitation and inhibition

Based on the conditions derived in the previous section, the minimal network in which
traveling waves can occur consists of one excitatory (E) and one inhibitory (I)
population. As in the example in Section 2.1, we assume that the connection weights
and widths of boxcar-shaped spatial profiles only depend on the source population.
The effective profile Eq 5 in this case is

P̂ (k) = wE
sin (REk)

REk
+ wI

sin (RIk)

RIk
, (11)

and positive and negative peaks of the profile are responsible for bifurcations to spatial
or temporal oscillations or wave solutions, respectively. The previous section derives
that in particular the position and height of the minima and maxima of the effective
profile are decisive. To assess parameter ranges in which the peaks of the effective
profile Eq 11 change qualitatively, we introduce the relative width ρ := RI/RE > 0 and

the relative weight η := −wI/wE > 0, divide P̂ (k) by wE and introduce the rescaled
wave number κ = REk to arrive at the dimensionless reduced profile

B̂ (κ) =
sin (κ)

κ
− η

sin (ρκ)

ρκ
, (12)

which simplifies the following analysis.
Our aim is to divide the parameter space (ρ, η) into regions that have qualitatively

similar shapes of the effective profile. The Methods section describes the derivation of
transition curves and Fig 3F illustrates the resulting parameter space. Above the first
transition curve ηt1 (ρ) (dashed curve, see Eq 46 in Methods), the absolute value of

B̂min is larger than B̂max (regions 1 and 2), and vice versa below this curve (regions 3
and 4). The second transition curve ηt2 (ρ) (solid curve, see Eq 49 in Methods)
indicates whether the extremum with the largest absolute value occurs at k = 0
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(regions 2 and 3) or at k > 0 (regions 1 and 4). The diagram provides the necessary
conditions and corresponding parameter combinations required for both spatial and
spatiotemporal patterns, purely based on the relative weights and the relative widths
which determine the effective profile. The analysis shows that traveling waves require
wider excitation than inhibition, ρ < 1, because only this relation simultaneously
realizes a minimum at a non-zero wave number k∗ and a maximum with a peak below
unity (see Fig 4).

A neural-field model exhibiting traveling waves can therefore be constructed at will
by first selecting a point within region 1 of Fig 3F where ρ < 1 and η ensures that∣∣∣B̂min

∣∣∣ > B̂max. Next, P̂ is fixed by scaling B̂ with the absolute weight wE such that

P̂max < 1 for a stable bump solution and P̂min < −1 for a Hopf bifurcation. Finally a
delay d > dcrit specifies a point below the bifurcation curve shown in Fig 3E, given by
the sufficient condition for the Hopf bifurcation in Eq 10. Likewise, solutions for
purely temporal oscillations appear in region 2, where P̂min < −1 is attained at a
vanishing wave number k and a delay d > dcrit; in addition P̂max < 1 ensures absence
of the other bifurcation into spatial oscillations. For purely spatial oscillations,
however, the comparison of the absolute values of B̂min and B̂max is not sufficient; it is
hence not sufficient to rely on the dashed curve separating regions 2 and 4 in Fig 3F.
A loss of stability due to P̂max > 1 can emerge not only in region 4 but also in region 2,

because even if
∣∣∣P̂min

∣∣∣ > P̂max, stability of P̂min can be ensured by a sufficiently short

delay d < dcrit, as shown in Fig 4.

2.4 Network simulation with nonlinear rate neurons

We have so far only investigated the properties of an analytically tractable linear
system that assumes time and space to be continuous variables. Next, we test the
derived conditions for the onset of oscillations, summarized in Fig 4, for a nonlinear,
discrete system in the continuum limit. We here consider a network of NE = 4, 000
excitatory (E) and NI = 1, 000 inhibitory (I) rate neurons described by a discrete
version of the neural-field equation Eq 1 (see Fig 11 for details). The model neurons
within each population are equally spaced on a ring of perimeter L = 1mm. This
rate-neuron network constitutes an intermediate step towards a network of spiking
neurons. Each neuron has a fixed in-degree KX (fixed number of incoming
connections) per source population X ∈ {E, I} with connections selected randomly
within a distance RX . A normalization of weights with the in-degree, w′

X = wX/KX ,
allows us to interpret p as a connection probability. The time constant τ and the delay
d are the same as in the neural-field model. As nonlinear gain function in Eq 1 we
choose ψ (u) = tanh (u).

The neuron activity of four rate-network simulations with different parameter
combinations are shown in Fig 5A-D. The location of the specific parameter
combinations is illustrated in Fig 5E-G with corresponding markers in the phase
diagrams that visualize the stability conditions shown in Fig 3 derived with the
neural-field model. Periodic traveling waves are possible if parameters are in the
purple regions of the diagrams.

The system simulated in Fig 5A is stable according to the corresponding conditions.
The square marker in the lower panels shows that P̂max < 1 (panel E), and although

P̂min < −1, the delay is small such that the system is far away from the bifurcation
(panel F). Indeed, the activity appears to not exhibit any spatial or temporal structure.

Fig 5B illustrates a case where P̂max > 1 causes an instability (diamond marker in
panel E). The Hopf bifurcation is remote in the parameter space (panel F) and panel
G ensures kmax > 0. A simulation of the corresponding rate-model network again
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Figure 5. Predictions from linear stability analysis lead to spatiotemporal
patterns in simulated network of nonlinear rate neurons. Different parameter
combinations, selected according to stability conditions in Fig 4, cause pattern
formation in rate-neuron network with tanh gain function. A-D Color-coded activity
per neuron over time. Neurons within each population are consecutively numbered
with a ‘neuron ID’ according to their position on the ring, and neuron IDs of
inhibitory neurons follow the ones of excitatory neurons. E-F Phase diagrams showing
conditions and parameter choices indicated by corresponding markers. Purple regions
indicate the possibility for periodic traveling waves. A Stable activity (square marker).
B Spatial oscillations (diamond marker). C Temporal oscillations (circular marker).
D Periodic traveling waves (star marker). Parameters: d, RE and RI as in Fig 1A-D,
wE = 2.73 in all panels. A wI = −4.10. B wI = −3.42. C wI = −4.79. D wI = −3.42.

confirms the predictions and exhibits stationary spatial oscillations (or periodic
bumps) with a wave number of kmax. In this finite-sized system with periodic
boundary conditions, the bumps are homogeneously distributed across the domain and
the wave numbers are integers.

Fig 5C demonstrates temporal oscillations at the parameter combination indicated
by the circular marker. We here choose P̂max < 1 and P̂min < −1 (panel E). The latter
condition leads to an entire range of delays that are beyond the bifurcation in panel F;
we choose a delay slightly larger than the critical delay, lying to the left of the
bifurcation curve. Inferred from panel G, kmin = 0 and, as expected from the
analytical prediction, the oscillations observed in simulations of the rate-neuron
network are purely temporal.

Finally, Fig 5D depicts periodic traveling waves (denoted by star marker), as
predicted by the analytically tractable neural-field model. The instability results from
P̂min < P̂ crit

min (panel F) and occurs at kmin > 0 (panel G) while P̂max remains stable
(panel E).
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2.5 Linearization of spiking network model

To assess the validity of the predictions obtained from the analytical model for
biologically more realistic spiking-neuron networks, we next linearize the dynamics of
spiking leaky integrate-and-fire (LIF) neurons and derive a linear system similar to the
neural-field model above. The sub-threshold dynamics of a single LIF neuron i with
exponentially decaying synaptic currents is described by a set of differential equations
for the time evolution of the membrane potential Vi and its synaptic current Ii as

τm
dVi
dt

= −Vi + Ii (t) ,

τs
dIi
dt

= −Ii + τm
∑

j

Jijsj (t− d) ,
(13)

where we follow the convention of [90] (see Eq 60 in Methods for the relation to
physical units). This definition, with both quantities Vi and Ii having the same unit,
conserves the total integrated charge per impulse flowing into the membrane
independent of the choice of the synaptic time constant τs. The membrane time
constant, defined as τm = RmCm with membrane resistance Rm and membrane
capacitance Cm, couples current to the capacitance. We here assume τs to be much

smaller than τm. The term sj (t) =
∑

k δ
(
t− tjk

)
denotes a spike train of neuron j

which is connected to neuron i with a constant connection strength Jij and
transmission delay d. Whenever Vi reaches the threshold Vθ, a spike is emitted and the
membrane potential is reset to the resting potential Vr and voltage-clamped for the
refractory period τref .

Assuming that a neuron receives many uncorrelated and Poisson-distributed input
spikes, and that amplitudes of postsynaptic potentials are small, we apply the
diffusion approximation [64, 91, 92] and approximate the input to the neuron by a
current with mean µi and variance σi as given by

τm
∑

j

Jijsj (t− d) ≈ µi (t) +
√
τmσi (t) ξ (t) . (14)

The term ξ (t) denotes a Gaussian white noise characterized by 〈ξ (t)〉 = 0 and
〈ξ (t) ξ (t′)〉 = δ (t− t′). Next, we introduce the instantaneous firing rate νj (t) of
neuron j. If all presynaptic neurons j belong to a homogeneous population of identical
neurons with uncorrelated activity and a postsynaptic neuron i receives input from K
of these neurons, the mean and variance (first and second infinitesimal moments [92])
of the input current to neuron i are given by

µi (t) = τm
∑

j

Jij νj (t− d) = τmJK ν (t− d) ,

σ2
i (t) = τm

∑

j

J2
ij νj (t− d) = τmJ

2K ν (t− d) ,
(15)

where ν ≡ 〈νj〉 represents the population-averaged instantaneous firing rate.
Such a mean-field approach has been employed previously to study networks of

spiking neurons without spatial structure [60, 64–66]. We extend on this approach by
assuming that the neurons are placed on a discrete one-dimensional domain with an
inter-neuron space constant ∆x. In the continuum limit ∆x≪ 1 we discard the
single-neuron index i and use a continuous variable x ∈ R for space, replacing
µi (t) → µ (x, t). We preserve the in-degree K and establish connections according to
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the symmetric and normalized connection probability p (r). As before, p depends only
on distance, the absolute value of the displacement r = x− y for neurons at positions
x and y.

In a spatially and temporally homogeneous state we may describe the state of the
system by a stationary firing rate independent of time and space: ν (x, t) = ν0 (see
Eq 50 in Methods). To investigate the stability of the spatially homogeneous
stationary state, we consider a small excursion δν away from the stationary firing rate
ν0,

ν (x, t) = ν0 + δν (x, t) , δν ≪ ν0, (16)

caused by a perturbation of the synaptic input and study its effect on the dynamics of
ν. The response of the firing rate to the synaptic input can be approximated to linear
order in δν by applying linear response theory to the Fokker-Planck equation [93], and
expressing δν in terms of the temporal linear convolution kernels hµ (t) and hσ2 (t) [94]
as

δν (x, t) = [hµ ∗ δµ] (x, t) +
[
hσ2 ∗ δσ2

]
(x, t) . (17)

The convolution operation is purely temporal, and the form of the response kernels is
given in Eqs 51-53 in Methods.

As the network is recurrently connected, an excursion of the firing rate in turn
leads to a perturbation of the mean of the synaptic input and its variance according to

δµ (x, t) = τmJK

∫ ∞

−∞
p (x− y) δν (y, t− d) dy

δσ2 (x, t) = τmJ
2K

∫ ∞

−∞
p (x− y) δν (y, t− d) dy.

(18)

In the following section, however, we ignore the hσ2 terms because their contributions
are usually small [94]. The combination of Eq 17 and Eq 18 provides a linearized
system for the spiking model that is continuous in space and time and enables a direct
comparison with the neural-field model in the following section.

2.6 Comparison of neural-field and spiking models

The linearization of the LIF model presented in the preceding section is the analogue
to taking the derivative ψ′ of the gain function in the linear stability analysis of the
neural-field model in Section 2.1. Therefore the results for the neural field model carry
over to the spiking case. To expose the similarities between the linearized systems of
the spiking model and the neural-field model, we may bring the equations for the
deviation from baseline activity

δo(x, t) =

{
δu(x, t) neural field

δν(x, t) spiking
(19)

to the form of the convolution equation

δo(x, t) =
[
h̃ ∗ δi

]
(x, t)

δi (x, t) =

∫ ∞

−∞
p (x− y) δo (y, t− d) dy,

(20)
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Figure 6. Transfer function of spiking neuron model and its approximation.
A Fitting error of the low-pass filter approximation of the transfer function for LIF
neurons derived in [94] over µ and σ (given relative to the reset potential). The fitting

error ǫ =
√
ǫ2τ + ǫ2H0

is color-coded. B Amplitude of the transfer function and

approximation (legend). Dashed line illustrates H0 following from the
analytically-determined effective coupling strength (see Eq 54 in Methods). C Phase.
The white cross in panel A indicates the working point (µ, σ) selected for the transfer
function shown in panels B and C and used in the simulations throughout the study.

where the only difference is the convolution kernel relating the deviation from the
input δi to those of the output δo defined as

h̃(t) :=

{
h̃nf(t) := Θ(t) w

τ e−
t
τ neural field

h̃s(t) := τmJK hµ(t) spiking.
(21)

The kernel on the first line is the fundamental solution (Green’s function) of the
linear differential operator appearing on the left hand side of Eq 1, including the
coupling weight w. As a consequence, the characteristic equations for both models
result from the Fourier-Laplace ansatz δo (x, t) = eikxeλt which relates the eigenvalues
λ to the wave number k as

H̃ (λ) · e−λd · p̂ (k) = 1. (22)

The effective transfer function H̃ (λ) is defined as the Laplace transform of Eq 21 of

the respective functions for the spiking model h̃s (t) and for the neural-field model

h̃nf(t). As a result we obtain the transfer function for the neural-field model

H̃nf (λ) =
1

1 + λτ
w. (23)

The corresponding expression for the effective spiking transfer function H̃s (λ) results
from Eqs 51-53 in Methods.

2.6.1 Parameter mapping

So far the stability analysis shows that the characteristic equations for both the
neural-field and the spiking model have the same form Eq 22 given a proper definition
of the respective transfer functions. The transfer function characterizes the
transmission of a small fluctuation in the input to the output of the neuron model.
Because these transfer functions differ between the two models, it is a priori unclear
whether their characteristic equations have qualitatively similar solutions.

The transfer function of the LIF model in the fluctuation-driven regime investigated
here can, however, be approximated by a first order low-pass (LP) filter [89, 95, 96]

Hµ (λ) ≈ HLP (λ) =
H0

1 + λτ
. (24)
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This simplified transfer function is of identical form as the transfer function Eq 23 of
the neural-field model, and thereby relates the phenomenological parameters w and τ
of the neural-field model to the biophysically motivated parameters of the spiking
model.

Fitting the absolute values of HLP (λ) to Hµ (λ) yields values for the parameters τ
and H0. According to Eq 21, H0 directly relates to w as

w = H0τmJK. (25)

The goodness of the fit of this transfer function to the first-order low pass filter
depends on the mean µ and variance σ of the synaptic input, as shown in Fig 6A. The
color-coded error of the fit combines the relative errors from both fitting parameters:

ǫ =
√
ǫ2τ + ǫ2H0

. For the majority of working points (µ, σ) the error is < 1% but the

relative errors increase abruptly towards the mean-driven regime. In this regime input
fluctuations are small and the mean input predominantly drives the membrane
potential towards threshold, so that the model fires regularly and the transfer function
exhibits a peak close to the firing frequency [95, 96]. We here fix the working point to
the parameters indicated by the white cross (see Eq 58 in Methods) for all
populations, resulting in a common effective time constant τ . Here, we obtain a time
constant τ = 1.94ms which thus lies in between the synaptic time constant,
τs = 0.5ms, and the membrane time constant, τm = 5ms, of the LIF neuron model.
For these parameters, Fig 6B shows the amplitude and Fig 6C the phase of the
original transfer function Hµ (λ) in black and the fitted transfer function HLP (λ) in
purple. The dashed gray line denotes H0 obtained by computing the effective coupling
strength from linear response theory, Hecs

0 , as a reference (see Eq 54 in Methods).

2.6.2 Linear interpolation between the transfer functions

Evaluating the characteristic equation for the neural-field model yields an exact
solution for each branch of the Lambert W function, given by Eq 7. For this model we
already established that the principle branch is the most unstable one. An equivalent
condition is not known for the general response kernel of the LIF neuron. To asses
whether we may transfer the result for the neural-field model to the spiking case, we
investigate the correspondence between the two characteristic equations that are both
of the form Eq 22 but with different transfer functions. For this purpose, we define an
effective transfer function

H̃α (λ) = αH̃s (λ) + (1− α) H̃nf (λ) , (26)

with the parameter α that linearly interpolates between the effective transfer functions
of the spiking and the neural-field model: H̃α=0 (λ) = H̃nf(λ) and H̃α=1 (λ) = H̃s(λ).
Fig 7 illustrates two different ways for solving the combined characteristic equation

H̃α (λ) · e−λd · p̂ (k) = 1. (27)

The first results from computing the derivative dλ/dα (see Eqs 55-57 in Methods)
from the combined characteristic equation and integrating numerically with the exact
solution of the neural-field model at α = 0 for each branch b as initial condition:

λ (α) =

∫ α

0

dλ

dα
dα, λ (0) = λb (28)

with
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Figure 7. Linear interpolation between neural-field (α = 0) and spiking
(α = 1) model for eigenvalue close to bifurcation. A Real and B imaginary part
of the eigenvalue λ as a function of the linear interpolation parameter α for the
characteristic equation in Eq 27. The solution at α = 0 for the neural-field model is
exact. C Real and D imaginary part of the eigenvalues (same units but different
scaling as in A and B) with analytically exact solution (by Lambert W function,
α = 0) as functions of the wave number k. Different branches b are color-coded
(legend); b = 0 corresponds to the principal branch with the maximum real eigenvalue
(gray cross). Circular markers denote the linear interpolation according to the
numerical integration of Eq 28. Dashed line segments for the linear interpolation are
obtained by solving the characteristic equation Eq 27 numerically. Both are evaluated
at the same values for α. Parameters: d = 1.5ms, RE = 0.2mm, RI = 0.07mm, g = 5.

dλ

dα
= − H̃s (λ)− H̃nf (λ)

α∂H̃s(λ)
∂λ + (1− α) ∂H̃nf (λ)

∂λ − d · H̃α (λ)
. (29)

The spatial profile only enters the initial condition, and the derivative Eq 29 is
independent of the wave number k.

As an alternative approach, we directly solve the combined characteristic equation
Eq 27 numerically with the known initial condition. Fig 7A and B indicate that only
the principle branch (b = 0) becomes positive while the other branches remain stable.
The branches come in complex conjugate pairs. For the numerical solution of the
characteristic equation, we fix the wave number to the value of k that corresponds to
the maximum real eigenvalue.

The analysis shows that we may ignore the danger of branch crossing since
different branches remain clearly separated in Fig 7A and B. In addition, the
eigenvalue on the principle branch is mostly independent of α, even if the system is
close to the bifurcation (when the real part of λ0 is close to zero). Thus for all values
of α we expect qualitatively similar bifurcations, including α = 1. This justification
transfers the rigorous results from the bifurcation analysis of the neural-field model in
Section 2.2 and Section 2.3, and corresponding effective parameters, to the spiking
model.
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2.7 Validation by simulation of spiking neural network

The Introduction illustrates spatiotemporal patterns emerging in a spiking network
simulation in Fig 1 and the subsequent sections derive a theory describing the
mechanisms underlying such patterns. Finally, the parameter mapping between the
spiking and the neural-field model explains the origin of the spike patterns by
transferring the conditions found for the abstract neural-field model in Section 2.2 and
Section 2.3 to the spiking case. This section validates that the correspondence
between network parameters in the two models is not incidental but covers the full
phase diagram.

In the following, we simulate a network with the same neural populations and
spatial connectivity used in the nonlinear rate-network in Fig 5, but replace the
rate-model neurons by spiking neurons, and map the parameters as described in
Section 2.6.1. The network model characterizes all neurons by the same working point
(see Eq 58 in Methods), which means that the connectivity matrix for the
excitatory-inhibitory network has equal rows; entries in Eq 4 depend on the
presynaptic population alone. Therefore the relative in-degree γ = KI/KE and the
relative synaptic strength g = −JI/JE parametrize the spiking-network connectivity
matrix as

P (r) = τmJEKE

(
pE (r) −γg pI (r)
pE (r) −γg pI (r)

)
. (30)

The rightmost panels of Fig 8A-C show the same simulation results as Fig 1B-D;
likewise the panels of Fig 1 have parameters that correspond to those of the
rate-neuron network in Fig 5. The different patterns in Fig 1B-D emerge by gradually
shifting a single network parameter that switches the system from a stable state
(white filled markers in Fig 8D and E), across intermediate states (gray-scale filled
markers) to the final states where stability is lost and the patterns have formed (black
filled markers). Arrows visualize the sequences in the phase diagrams Fig 8D and E
and the markers reappear in the upper left corners of the corresponding raster plots in
Fig 8A-C.

The sequence of panels in Fig 8A illustrates a gradual transition from a stable (AI)
state to spatial oscillations attained by increasing the amplitudes of excitatory
postsynaptic current (PSC) amplitudes J

′

E in the network. With J
′

we denote the
weight as a jump in current while J denotes a jump in voltage in the physical sense,
and the relationship is: J

′

= CmJ/τs (see Eq 60 in Methods). The parameter

variation thus homogeneously scales the effective profile P̂ but preserves the shape of
the reduced profile B̂ (fixed position of diamond marker in panel F). Simultaneously
an increasing rate of the external Poisson input compensates for the reduced PSC
amplitudes to maintain the fixed working point (µ, σ) of the neurons (see Eq 58 in
Methods). Diamond markers in Fig 8D show that along its path the system crosses

the critical value P̂max = 1, while P̂min > P̂ crit
min(τ/d

crit) stays in the stable regime, as

shown in panel E. However, even for P̂max . 1 (for J
′

E = 60 pA) the network activity
already exhibits weak spatial oscillations.

Choosing the synaptic delay d as a bifurcation parameter highlights the onset of
temporal oscillations for the case k = 0 (panel B sequence, circular markers) and
spatiotemporal oscillations for the case k > 0 (sequence in Fig 8C, star markers). In
contrast to the case of purely spatial waves in panel A, the procedure preserves the
effective spatial profile (fixed positions in panels D and F) and the system crosses the
transition curve in panel E due to increasing delay alone, thus decreasing the ratio τ/d.

Fig 8C illustrates the gradual transition to traveling waves, where P̂max remains in
the theoretically stable regime at all times, but is close to the critical value of 1 (see
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the star marker in panel D). As a result, we observe spatial oscillations with a spatial
frequency given by kmax before and even after the Hopf bifurcation. For delays longer
than the critical delay, mixed states occur in which different instabilities due to P̂max

and P̂min compete. For delay values well past the bifurcation, this mixed state is lost
resulting in a dependency only on P̂min and periodic traveling waves with a spatial
frequency that depends on kmin.
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Figure 8. Transitions from theoretically stable states to spatiotemporal
patterns in spiking network simulation. A-C Spike rasters showing transition to
network states in Fig 1B-D (same markers, same parameter combinations). The
changed parameter value is given on top of each raster plot. A Increasing recurrent
weight J

′

E leads to onset of spatial oscillations. B Increasing synaptic delay d leads to
onset of temporal oscillations at k = 0. C Increasing delay d leads to onset of
temporal oscillations at k > 0, i.e., periodic traveling waves. D-E Gray shaded
markers and white arrows labeled according to respective panel A-C in phase diagrams
indicate sequences of parameter combinations and breakdown of stability at P̂max = 1
or at P̂min = P̂ crit

min. For each sequence in panels A-C, delay d, excitatory profile width
RE, inhibitory profile width RI, and the relative synaptic strength g correspond to the
values given in Fig 1B-D with corresponding markers.
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3 Discussion

The present study employs mean-field theory [60] to rigorously map a spiking network
model of leaky integrate-and-fire (LIF) neurons with constant transmission delay to a
neural-field model. We use a conceptually similar linearization as Kriener et al. [85]
combined with an analytical expressions for the transfer function in the presence of
colored synaptic noise [94]. The insight that this transfer function in the
fluctuation-driven regime resembles the one of a simple first-order low-pass filter
facilitates the parameter mapping between the two models. The resulting analytically
tractable effective rate model depends on the dynamical working point of the spiking
network that is characterized by both the mean and the variance of the synaptic input.
By means of bifurcation theory, in particular linear Turing instability
analysis [29, 44, 45], we investigate the origin of spatiotemporal patterns such as
temporal and spatial oscillations and in particular periodic traveling waves emerging
in spiking activity. The mechanism underlying these waves encompasses delay-induced
fast global oscillations, as described by Brunel and Hakim [60], with spatial
oscillations due to a distance-dependent effective connectivity profile. We derive
analytical conditions for pattern formation that are exclusively based on general
characteristics of the effective connectivity profile and the delay. The profile is split
into a static weight that is either excitatory or inhibitory for a given neural
population, and a spatial modulation that can be interpreted as a distance-dependent
connection probability. Given the biological constraint that connection probabilities
depend on distance but weights do not, periodic traveling waves cannot occur in a
single homogeneous population irrespective of the shape of distance-dependent
connection probability. Only the effective connectivity profile of two populations
(excitatory and inhibitory), permits solutions where a mode with finite non-zero wave
number is the most unstable one, a prerequisite for the emergence of nontrivial spatial
patterns such as traveling waves. We therefore establish a relation between the
anatomically measurable connectivity structure and observable patterns in spiking
activity. The predictions of the analytically tractable neural-field model are validated
by means of simulations of nonlinear rate-unit networks [97] and of networks
composed of LIF-model neurons, both using the same simulation framework [98]. In
our experience, the ability to switch from a model class with continuous real-valued
interaction to a model class with pulse-coupling by changing a few lines in the formal
high-level model description increases the efficiency and reliability of the research.

The presented mathematical correspondence between these a priori distinct classes
of models for neural activity has several implications. First, as demonstrated by the
application in the current work, it facilitates the transfer of results from the
well-studied domain of neural-field models to spiking models. The insight thus allows
the community to arrive at a coherent view of network phenomena that appear
robustly and independently of the chosen model. Second, the quantitative mapping of
the spiking model to an effective rate model in particular reduces the parameters of
the former to the set of fewer parameters of the latter; single-neuron and network
parameters are reduced to just a weight and a time constant. This dimensionality
reduction of the parameter space conversely implies that entire manifolds of spiking
models are equivalent with respect to their bifurcations. Such a reduction supports
systematic data integration: Assume a researcher wants to construct a spiking model
that reproduces a certain spatiotemporal pattern. The presented expressions permit
the scientist to restrict further investigations to the manifold in parameter space in
line with these observations. Variations of parameters within this manifold may lead
to phenomena beyond the predictions of the initial bifurcation analysis. Additional
constraints, such as firing rates, degree of irregularity, or correlations, can then further
reduce the set of admissible parameters.
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To keep the focus on the transferability of results from a neural-field to a spiking
model, the study restricts the analysis to a rather simple network model. In many
cases, extensions to more realistic settings are straight forward. As an example, we
perform our analysis in one-dimensional space. In two dimensions, the wave number
becomes a vector and bifurcations to periodic patterns in time and space can be
constructed (see [28, Section 8.4] and [29]). Likewise, we restricted ourselves to a
constant synaptic delay like Roxin et al. [42, 51] because it enables a separation of a
spatial component, the shape of the spatial profile, and a temporal component, the
delay. A natural next step is the inclusion of an axonal distance-dependent delay term
as for instance in [40] to study the interplay of both delay contributions [58]. For
simplification, we use here a boxcar-shaped spatial connectivity profile in the
demonstrated application of our approach. For the emergence of spatiotemporal
patterns, however, the same conditions on the connectivity structure and the delays
hold for more realistic exponentially decaying or Gaussian-shaped profiles [20–22]. If
the spatial connectivity profiles are monotonically decaying in the Fourier domain (as
it is the case for exponential or Gaussian shapes), the Fourier transform of the
effective profile of a network composed of an excitatory and an inhibitory population
exhibits at most one zero-crossing. Either the minimum or the maximum are attained
at a non-zero and finite wave number k, but not both. With a cosine-shaped effective
profile, only a single wave number dominates by construction [42,51]. Here, we decided
for the boxcar shape because of its oscillating Fourier transform that allows us to
study competition between two spatial frequencies corresponding to the two extrema.

Similar to our approach, previous neural-field studies describe the spatial
connectivity profile as a symmetric probability density function (see, for
example, [49]). For our aim, to establish a link to networks of discrete neurons, the
interpretation as a connection probability and the separation from a weight are a
crucial addition. This assumption enables us to distinguish between different neural
populations, to analyze the shape of the profile based on parameters for the excitatory
and the inhibitory contribution, and to introduce biophysically motivated parameters
for the synaptic strength. Starting directly with an effective profile that includes both,
excitation and inhibition, such as (inverse) Mexican hat connectivity, is
mathematically equivalent and a common approach in the neural-fields
literature [29, 40, 42, 53]. But it neglects the biological separation of neurons into
excitatory and inhibitory populations according to their effect on postsynaptic targets
(Dale’s law [99]) and their different spatial reach of connectivity [100]. A result of this
simplification, these models can produce waves even with a single homogeneous
population [42–44], while with homogeneous stationary external drive we show that at
least two populations are required.

Local excitation and distant inhibition are often used to support stationary
patterns such as bumps, while local inhibition and distant excitation are associated
with non-stationary patterns such as traveling waves [28, 40, 101]. For sufficiently long
synaptic delays, we also observe periodic traveling waves with local inhibition and
distant excitation, as often observed in cortex [100]. However, we show that the reason
for this is the specific shape of the effective spatial profile, and not only the spatial
reach itself. Our argumentation is therefore in line with Hutt et al. [48, 54] who
demonstrate that wave instabilities can even occur with local excitation and distant
inhibition for specific spatial interactions. The spatial connectivity structure and
related possible activity states are in addition important factors for computational
performance or function of model networks [84, 102].

The parameter mapping between a neural-field and a spiking model in this study
relies on the insight that the transfer function of the LIF neuron in the
fluctuation-driven regime resembles the one of a simple first-order low-pass filter.
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Since this approximation not only holds for LIF neurons, but also for other spiking
neuron models, our results are transferable. A further candidate model with this
property is the exponential integrate-and-fire model [103]. Other examples include
Nordlie et al. [104] who characterize the firing-rate responses of LIF neurons with
strong alpha-shaped synaptic currents and similarly Heiberg et al. [105] for a LIF
neuron model with conductance based synapses and potassium-mediated
afterhyperpolarization currents previously proposed [106].

In the literature, the time constant of neural-field models is often associated with
the membrane or the synaptic time constant [33, 73, 84]. Here, we observe that the
time constant of the neural-field model derived from the network of spiking neurons
falls in between the two. In line with [104,107], we suggest to reconsider the meaning
of the time constant in neural-field models.

A limitation of the approach employed here is that the linear theory is only exact
at the onset of waves. Beyond the bifurcation, it is possible that nonlinearities in the
spiking model govern the dynamics and lead to different prevailing wave numbers or
wave frequencies than predicted. Roxin et al. [51] report that the stability of traveling
waves depends crucially on the nonlinearity. Nevertheless they do not observe
traveling waves in their spiking-network simulations. In the present work, however, we
identify biophysically motivated neuron and network parameters that allow traveling
waves to establish in a spiking network. Still, we had to increase the delay beyond the
predicted bifurcation point to obtain a stable wave pattern.

Furthermore, the theory underlying the mapping of the spiking network to the
neural-field model is based on the diffusion approximation and therefore only
applicable for sufficiently small synaptic weights. Widely distributed synaptic weights,
for example, may lead to larger deviations. We here primarily target a wave-generating
mechanism for cortical networks. Since in other brain regions involved neuron types,
connectivity structures and input characteristics are different, other mechanisms for
pattern formation not covered in this work need to be taken into account [3].

The working-point dependence of the neural-field models derived here offers a new
interpretation of propagating activity measured in vivo [8, 12]. Even if the anatomical
connectivity remains unchanged during a period of observation, the stability of the
neural system can be temporarily altered due to changes in activity. The transfer
function of a LIF neuron depends on the mean and the variance of its input, and we
have shown that stability is related to its parametrization. In particular, local changes
of activity, for example due to a spatially confined external input, can affect stability
and hence influence whether a signal remains rather local or travels across the cortical
surface. That means, we would relate the tendency of a neural network to exhibit
spatiotemporal patterns not only to its connectivity, but also to its activity state that
can change over time.

4 Methods

4.1 Linear stability analysis

4.1.1 Derivation of the characteristic equation

With the Fourier-Laplace ansatz u (x, t) = eikxeλt for the integro-differential equation
in Eq 1 linearized around u0 and the choice to set the slope of the gain function to
unity, the characteristic equation in Eq 3 results from

23/42



Senk et al. Conditions for traveling waves in spiking neural networks

τλ eikxeλt = −eikxeλt +

∫ ∞

−∞
wp (x− y) eikyeλ(t−d) dy

τλ = −1 + we−λd

∫ ∞

−∞
p (x− y) e−ik(x−y) dy

= −1− we−λd

∫ −∞

∞
p (r) e−ikr dr, r = x− y

= −1 + we−λd

∫ ∞

−∞
p (r) e−ikr dr

︸ ︷︷ ︸
≡p̂(k)

.

(31)

In the last row, we recognize the Fourier transform p̂ of the spatial profile p.

4.1.2 Effective connectivity profile for two populations

While the connectivity P is a scalar in the one-population model, it is a matrix in the
case of two populations (given in Eq 4). The ansatz for deriving the characteristic
equation in the latter case reads δu (x, t) = veikxeλt, with v denoting a vector of
constants. This leads to the auxiliary eigenvalue problem

P̂ (k) v = P̃ (k) v, (32)

where P̂ denotes an eigenvalue and P̃ is an auxiliary matrix containing the Fourier
transforms of the entries of P :

P̃ (k) =

(
wEE p̂EE (k) wEI p̂EI (k)
wIE p̂IE (k) wII p̂II (k)

)
. (33)

Eq 32 possesses a nontrivial solution v if and only if det
(
P̃ (k)− P̂ (k)1) = 0. Eq 5

explicitly states the two eigenvalues P̂1,2 solving this equation. These eigenvalues
constitute the effective profile in the characteristic equation in Eq 3 that hence holds
also for the two-population case.

4.1.3 Largest real part on principle branch of Lambert W function

The function x (W ) =W eW has a minimum at W = −1, no real solution for x < −e−1,
a single solution for x > 0, and two solutions for x ∈ [−e−1, 0). Typically, the term
‘principal branch’ of the Lambert W function with branch number b = 0 refers to the
real branch defined on the interval [−e−1,∞), where for negative arguments the larger
solution is considered. Here we extend the definition to the whole real line by the
complex branch with maximal real part and positive imaginary part on (−∞,−e−1).

We demonstrate that the branch of the Lambert W function with the largest real
part is the principal branch. Considering only real-valued arguments x ∈ R, we write
W (x) = |W (x)| eiϕ = α+ iβ and

W (x) eW (x) = |W (x)| eα ei(ϕ+β) = x ∈ R (34)

→ ei(ϕ+β) = ±1, (35)

where ϕ ∈ [−π, π] is the principal value. We index the branches by q ∈ Z according to
the number of half-cycles of the exponential in Eq 35: ϕ+ β = q · π. The branch

24/42



Senk et al. Conditions for traveling waves in spiking neural networks

number is equal to b =
⌊
q
2

⌋
with ⌊·⌋ denoting the floor function. The principle branch

is therefore given by the index q = 0 for x ≥ 0 and by q = 1 for x < 0.
Taking the absolute square of Eq 34 yields the real equation

x2 e−2α = α2 + β2. (36)

Without loss of generality we may assume β ≥ 0; this is certainly true for the real
solutions with β = 0 and it also holds for one of the complex solutions for any complex
pair. Complex solutions come in conjugate pairs due to the symmetry
(ϕ, β) → (−ϕ,−β) exhibited by Eq 35 and Eq 36. Since each member of a pair has by
definition the same real part, it is sufficient to consider only the member with positive
imaginary part β > 0.

To prove that the real part α of W is maximal for b = 0, we show that α is a
decreasing function of β along the solutions of Eq 34. Investigating the intersections of
the left-hand side and the right-hand side of Eq 36 as a function of α illustrates how
increasing the imaginary part β affects the real part α. The left-hand side is a
decaying function of α with an intercept of x2. The right-hand-side is a parabola with
an offset of β2.

For x ∈ (−∞,−e−1) ∪ [0,∞), an intersection occurs either at a positive real part
α ≥ 0 if x2 ≥ β2, or at a negative real part α < 0 if x2 < β2. Increasing β moves the
parabola upwards and therefore the intersection to the left, meaning that α decreases
with increasing β.

For x ∈ [−e−1, 0), we distinguish the cases β = 0 and β > 0 which both have only
solutions with α < 0. First, the two real solutions (q = ±1) existing in this interval
correspond to two simultaneously occurring intersections; in addition a third
intersection is created by the squaring Eq 36 but it is not an actual solution of Eq 34.
The intersection at the larger real part per definition corresponds to the principal
branch with index q = 1. Second, the complex solutions are indexed by odd numbers q
with |q| > 1. Taking into account the interval where ϕ is defined, the imaginary part is
bounded from below such that β ≥ 2π for non-principal branches. Analogous to the
previously discussed interval of x, there exists only one intersection between the
exponential function and the parabola for large values of β (in particular: x2 < β2)
that moves towards smaller values of α with increasing β.

So in summary we have shown that for real x, the principal branch harbors the
solutions with maximal real part α.

4.1.4 Characteristic equation with Lambert W function

The characteristic equation in Eq 3 can be rewritten in terms of the Lambert W
function to Eq 7 using the transformation:

(1 + τλ) eλd = P̂ (k) | · d
τ
e

d
τ

(
dλ+

d

τ

)
edλ+

d
τ = P̂ (k)

d

τ
e

d
τ

dλ+
d

τ
=W

(
P̂ (k)

d

τ
e

d
τ

)
.

(37)

The last step collects terms using the definition of the Lambert W function,
z =W (z) eW (z)with z ∈ C.
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Figure 9. Graphical analysis for extrema of reduced profile for derivation
of transition curves. A The condition for the extremum Eq 41 amounts to the
addition of two vectors in the complex plane whose sum is purely imaginary. The
vectors have lengths a1 and a2 and angles φ1 and φ2, defined in Eq 42. B Diagram of
Fig 3F with indicated parameter combinations (ρ, η) as used in panels C and D.

C-D Reduced profile B̂ (top) and φ1 and φ±1 from Eq 43 vs. κ (bottom) for two
different combinations of (ρ, η) with line colors corresponding to regions in panel B.

C
∣∣∣B̂min

∣∣∣ > B̂max in purple and vice versa in dark gray. D B̂min at κ = 0 in light blue

and at κ > 0 in purple.

4.2 Properties of the spatial profile

We assume that the spatial profile p is a symmetric probability density function, which
implies that its Fourier transform p̂, also called the characteristic function, is real
valued and even. Further, we can prove that p̂ ∈ (−1, 1] and that p̂ attains 1 only at
the origin in two steps:

• |p̂(k)| ≤ 1 for all k ∈ R:

|p̂(k)| =
∣∣∣∣
∫ ∞

−∞
p(r)e−ikr dr

∣∣∣∣ ≤
∫ ∞

−∞

∣∣p(r)e−ikr
∣∣ dr

=

∫ ∞

−∞
p(r) dr = 1 for all k ∈ R,

(38)

• |p̂(k)| < 1 for all k 6= 0:
∣∣∣∣
∫ ∞

−∞
p(r)e−ikrdr

∣∣∣∣ ≤
∫ ∞

−∞
p(r) |cos (kr)| dr

<

∫ ∞

−∞
p(r) dr = 1 for all k 6= 0,

(39)

because |cos (kr)| < 1 almost everywhere in r if k 6= 0.

4.3 Transition curves for reduced profile

We here use a graphical approach to derive the transition curves shown first in Fig 3F.
A necessary condition for an extreme value of the reduced profile B̂ (κ) from Eq 12
located at κ∗ is: ∂

∂κB̂ (κ) |κ∗ = 0. With the derivative
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∂

∂κ
B̂ (κ) =

cos (κ)

κ
− sin (κ)

κ2
− η

cos (ρκ)

κ
+ η

sin (ρκ)

ρκ2
, (40)

this condition can be rewritten as

0 = Re
[
(κ+ i) eiκ − η

r
(ρκ+ i) eiρκ

]

= Re
[
a1e

iφ1 + a2e
iφ2

]

= a1 cos (φ1) + a2 cos (φ2) ,

(41)

where a1 and a2 are the absolute values of the complex numbers and φ1 and φ2 their
phases, given by

a1 (κ) =
√
1 + κ2

φ1 (κ) = κ+
π

2
− arctan (κ)

a2 (κ; ρ, γ) =
η

ρ

√
1 + ρ2κ2

φ2 (κ; ρ) = ρκ+
3π

2
− arctan (ρκ) .

(42)

The vanishing right-hand-side of Eq 41 implies that the term in the square brackets is
purely imaginary. An example solution for the case a1 < a2 is illustrated in Fig 9A in
the complex plane. Note that a1 and φ1 are independent of the parameters ρ and η in
this representation. In our graphical analysis, Eq 41 is interpreted as the sum of two
vectors in the complex plane. As shown in Fig 9A, we determine φ1 as the angle at
which the tip of the second vector ends on the imaginary axis, which follows from
elementary trigonometry as

φ±1 = π ± arccos

(
a2
a1

cos (φ2)

)
. (43)

The locations of extrema are then given by the intersections of φ±1 with the second row
of Eq 42. Here φ2 is determined from the last equation in Eq 41.

Fig 9B reproduces Fig 3F. The white bars connect points given by parameter
combinations (ρ, η) on both sides of the transition curves, and the parameters are
specified in panels C and D. The first transition curve ηt1 (ρ) (dashed line in Fig 9B) is

determined by B̂max (κmax) =
∣∣∣B̂min (κmin)

∣∣∣, that means it is determined by

parameters (ρ, η) for which the absolute values of the positive and negative extremum
of the profile are equal. The top panel of Fig 9C compares two reduced profiles
obtained for a fixed value for ρ and two values for η. The line colors correspond to the
colored regions in the diagram in Fig 9B for the respective parameter combination∣∣∣B̂min

∣∣∣ > B̂max for the purple profile and vice versa for the dark gray profile. The

point with the maximum absolute value of each profile is indicated with a cross.
Exactly at the transition either κmax or κmin is zero (for example κ0 = 0) and the
other one is non-zero (for example κ1 > 0). This condition, with Eq 12, yields the
absolute value for both extrema at the transition, where they must be equal, thus∣∣∣B̂ (κ0)

∣∣∣ =
∣∣∣B̂ (κ1)

∣∣∣ = |1− η|. Any point on the transition curve is a unique triplet of

parameters(ρ, η, κ1), and with the condition ∂
∂κ B̂ (κ) |κ1

= 0 we obtain two equations
that need to be fulfilled at each point for κ = κ1:

27/42



Senk et al. Conditions for traveling waves in spiking neural networks

1− η =
sin (κ)

κ
− η

sin (ρκ)

ρκ

1− η = cos (κ)− η cos (ρκ) .

(44)

The lower equation is obtained by identifying B̂ (κ) in its derivative in Eq 40. We
solve both equations with respect to η and equate them to get

1

κ
sin (κ) [1 + cos (ρκ)]− 1

ρκ
sin (ρκ) [1 + cos (κ)] + cos (ρκ)− cos (κ) = 0. (45)

For a given value of ρ, we compute the roots of the left-hand-side expression, which
defines κ(ρ). The bottom panel of Fig 9C shows φ1 from Eq 42 as a black line and φ±1
from Eq 43 for the parameters of the two effective profiles (same color coding as in the
top panel). The intersections corresponding to the relevant extrema are highlighted by
crosses. This visual analysis allows us to identify the interval for κ in which
zero-crossings of the left-hand side of Eq 45 as a function of κ can correspond to the
extrema, that is κ ∈ (0, 4.49341) where the lower limit corresponds to φ1 = π

2 and the
upper limit to φ1 = 3π

2 . The zero-crossing at the smallest non-zero κ indicates the
extremum at κ1. Finally, the transition curve is given by

ηt1 (ρ) =
1 + cos (κ (ρ))

1 + cos (ρκ (ρ))
, (46)

where κ(ρ) is given by the roots of (45).
The second transition curve ηt2 (ρ) (solid line in Fig 9B) indicates whether the

extremum with the largest absolute value occurs at κ = 0 or at κ > 0. Fig 9D shows in
the top panel two reduced profiles for a fixed value of η, but two values for ρ such that
the B̂min occurs once at κmin = 0 (light blue as in Fig 9B) and once at κmin > 0
(purple as in Fig 9B), indicated by cross markers.

Graphical analysis using the bottom panel of Fig 9D indicates that this transition
happens when φ−1 at κ & 0 switches from lying slightly above (light blue line) to below
(purple line) the parameter-independent function φ1 (black line). We observe that
decreasing ρ moves the intersection point and with it the location of the extremum up
the black line, starting from κ = 0 to larger values for κ.

Close to the transition, the intersection point comes arbitrarily close to κ = 0,
which permits local analysis by a Taylor expansion of φ1 for small κ:

φ1 (κ) ≈
π

2
+
κ3

3
+O

(
κ5

)
(47)

φ−1 (κ; ρ, η) ≈ π

2
+
ηρκ3

3
+O

(
(ρκ)

5
)
. (48)

A comparison of the coefficients of the third-order polynomials then gives the
transition curve

ηt2 (ρ) =
1

ρ2
, (49)

because this coefficient decides for small κ whether φ1 (black line) or φ−1 as a function
of the parameters (ρ, η) has a larger slope and lies on top.
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4.4 Linearization of the spiking model

4.4.1 Stationary firing rate

The stationary firing rate ν0 in the limit of short synaptic time constants (τs ≪ τm) is
given by [89, 108, Eq A.1]:

ν−1
0 = τr + τm

√
π (F (yθ)− F (yr))

f (y) = ey
2

(1 + erf (y)) , F (y) =

∫ y

f (y)dy

with y{θ,r} =
V{θ,r} − µ

σ
+
β

2

√
τs
τm
, β =

√
2

∣∣∣∣ζ
(
1

2

)∣∣∣∣ ,

(50)

where ζ denotes the Riemann’s zeta function [109].

4.4.2 Transfer function

The transfer function here denoted by Hµ is computed based on the first term
of [94, Eq 29]

HG (ω) =
ν0

√
2

σ

1 + iωτm

Φ′
ω|xr

xθ

Φω|xr

xθ

, (51)

for the oscillation frequency ω and x{r,θ} =
√
2y{θ,r}. The function

Φω (x) = e
1
4
x2

U
(
iωτm − 1

2 , x
)

is defined by parabolic cylinder functions U [95,109] and

Φ
′

ω = ∂xΦω. We need to multiply the transfer function with the transfer function of a
first-order low-pass filter due to the exponential time course of our synaptic currents:

Hµ (ω) = HG (ω)
1

1 + iωτs
. (52)

We then obtain hµ by an inverse Fourier transform and a Laplace transform because λ
is a complex frequency and ω is real in the present context:

hµ (t) = F−1 [Hµ] (t)

Hµ (λ) = L [hµ] (λ) .
(53)

The latter relations imply a replacement iω → λ in Eq 51.

4.5 Model comparison

4.5.1 Effective coupling strength

For the numerical evaluation of the transfer function, we show Hecs
0 = wecs/ (τmJK) as

the dashed line in Fig 6B, obtained by calculating analytically the effective coupling
strength wecs from linear-response theory. The effective coupling strength for a
connection from neuron j with rate νj to neuron i with rate νi is defined as [89, Eqs.
A.2 and A.3 (correcting a typo in this previous work)]:
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wecs
ij =

∂νi
∂νj

= α̃Jij + β̃J2
ij

with α̃ =
√
π (τmνi)

2 1

σi
(f (yθ)− f (yr))

and β̃ =
√
π (τmνi)

2 1

2σ2
i

(f (yθ) yθ − f (yr) yr) ,

(54)

where f and y{θ,r} are defined as in Eq 50. The dashed line in Fig 6B is given by the
term ∝ α̃ alone since we also ignore the small contribution of the variance to the
transfer function of the LIF neuron [94] .

4.5.2 Linear interpolation

To compute the derivative dλ/dα given in Eq 29, we use a method for computing the
derivative of an implicit function: If R (α, λ) = 0, it follows that the derivative

dλ

dα
= −∂R/∂α

∂R/∂λ
=: −Rα

Rλ
. (55)

With the characteristic equation for the effective transfer function Eq 27, we get

R (α, λ) = H̃α (λ) · e−λd · p̂ (k)− 1 = 0. (56)

The partial derivatives of R with respect to α and λ are

Rα = e−λd · p̂ (k) · ∂H̃α (λ)

∂α

= e−λd · p̂ (k) ·
[
H̃s (λ)− H̃nf (λ)

]
,

and

Rλ = p̂ (k) · ∂
∂λ

[
H̃α (λ) · e−λd

]

= e−λd · p̂ (k) ·
[
∂H̃α (λ)

∂λ
− d · H̃α (λ)

]

= e−λd · p̂ (k) ·
[
α
∂H̃s (λ)

∂λ
+ (1− α)

∂H̃nf (λ)

∂λ
− d · H̃α (λ)

]

= e−λd · p̂ (k) ·
[
αH̃s

λ (λ) + (1− α) · H̃nf
λ (λ)− d · H̃α (λ)

]
.

(57)

4.6 Fixing the working point

For the spiking model, we fix the mean input µ and its variance σ relative to their
spiking threshold for both populations. Each neuron receives external excitatory and
inhibitory input with Poisson-distributed interspike interval statistics (analogous
to [89, Eq. E.1]). The external input rates for excitatory neurons νE,ext and for
inhibitory neurons νI,ext are

νE,ext = νE,0 + νbal, νI,ext = νbal/g, (58)
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with νE,0 = µ−µloc

JEτm
and νbal =

σ2−σ2
loc−τmνE,0J

2
E

τmJ2
E
(1+g2)

, (59)

where µloc = τmν KJ (1− γg) and σ2
loc = τmν KJ

2
(
1 + γg2

)
are the mean and

variance due to local input from other neurons firing with the target rate ν,
respectively. The rate νbal establishes a balance between excitation and inhibition,
taking into account the variances, and the rate νE,0 only applies to the excitatory
neurons with the aim to shift the mean.

4.7 Physical units

The sub-threshold dynamics of the LIF neuron in Eq 13 are, without loss of generality,
given in scaled units. In this formulation, V , J and I are all quantities with unit Volt.
For the parameter-wise comparison with numerical network simulation (for example
using NEST [98]), it is useful to consider a description where I

′

and J
′

represent
electric currents in units of Ampere:

τm
dV

′

i

dt
= −

(
V

′

i − EL

)
+RmI

′

i (t)

τs
dI

′

i

dt
= −I ′

i + τs
∑

j

J
′

ijsj (t− d) .
(60)

Here, we also introduce a resistive leak reversal potential EL, and shift threshold
and reset potentials V ′

θ = Vθ + EL and V ′
r = Vr + EL, respectively. The membrane

time constant τm = RmCm relates the membrane resistance Rm and capacitance Cm.
In units of Ampere, the total current input I

′

= I/Rm and the synaptic weight
amplitude J

′

= CmJ/τs.

4.8 Network structure and parameters

We simulate recurrently connected neural networks of one excitatory and one
inhibitory populations each using the neural simulation software NEST [111], using
either spiking- or rate-neuron models. The support for rate neurons in NEST was
recently added as described in [97]. Figs 10 and 11 provide the complete neuron and
network model descriptions and Fig 12 summarizes all parameters as used for the
network state showing periodic traveling waves (marked by black star in Fig 1D,
Fig 5D and Fig 8C). Other simulation parameters used to obtain other network states
shown throughout this paper are indicated with a � marker in Fig 12, and the
changed parameters are given in the corresponding figures. The same marker always
denotes the same parameter combination across figure panels. The tables distinguish
between network properties and parameters valid for both spiking and rate neuron
models and those specific to only one neuron model. Irrespective of the choice of
neuron model (rate vs. spiking), the neuron parameters are shared between both
neuron populations. The neurons of each population are positioned with equal spacing
along a one-dimensional path of perimeter L and connections between neurons are
drawn according to a distance-dependent rule with periodic boundary conditions (a
“ring” network) using the NEST Topology module.

The number of excitatory neurons NE in our network is four times larger than the
number of inhibitory neurons NI [112]. The number of incoming connections, the
in-degree K{E,I}, is proportional to the population size of the presynaptic population,
assuming an overall connection probability of 10%. Around each postsynaptic neuron,
the connection algorithm establishes connections from neighboring neurons within a
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Model summary
Populations Excitatory (E), inhibitory (I)
Topology Ring network: Neurons positioned equally spaced on one-

dimensional domain of length L; periodic boundary conditions
Connectivity Random convergent connections with fixed in-degree, distance-

dependent boxcar-shaped spatial profiles realized with cut-off
masks

Spiking model
Neuron model Leaky integrate-and-fire (LIF), fixed threshold, absolute refrac-

tory time
Synapse model Static weights and delays, exponentially shaped postsynaptic

currents
Input Independent fixed-rate Poisson spike trains to all neurons (ex-

citatory and inhibitory Poisson sources)
Measurement Spike activity

Rate model
Neuron model Rate neuron with tanh gain function
Synapse model Delayed rate connection
Input -
Measurement Activity

Figure 10. Summary of network models following the guidelines of Nordlie
et al. [110]. Separation between nonlinear spiking and rate neurons as used in NEST
simulations.

distance of R{E,I}. The width of the profile depends on the presynaptic population
alone. Potentially presynaptic neurons within this distance are picked at random and
connections are established until the fixed in-degree is reached. Multiple connections
between the same pair of neurons termed multapses are allowed, but self-connections
(autapses) are prohibited.

The leaky integrate-and-fire model with exponential postsynaptic currents is
implemented in NEST under the name iaf_psc_exp. The neuron parameters are the
same as in the microcircuit model of [113] with the difference that our membrane time
constant τm is half of theirs and that we here omit the refractory period τref , although
our results generalize to a non-zero τref . An excitatory and an inhibitory Poisson
generator provide external input to all neurons. Their rates ν{E,I},ext are determined
according to Eq 58 for fixing the working point (µ, σ).

The dynamics of rate-based units in NEST is specified as stochastic differential
equations using the Itô convention [97], except that we here set the stochasticity (the
variance of the input) to zero. We use the neuron model tanh_ipn, that employs a
hyperbolic tangent as a gain function.

Simulations run for a simulation time Tsim with a temporal resolution of dt. During
rate simulations, the instantaneous rate is recorded once at each time step dt. Our
raster plots from simulations of the spiking model and the image plots from simulation
of the rate model show the network activity from all simulated neurons after a
start-up transient Ttrans.

4.9 Software and implementation

Spiking- and rate-neuron network simulations were implemented in NEST v2.14.0 [98],
and Python v2.7.11. Post-processing and plotting relied on Python with numpy
v1.10.4, SciPy v0.17.0, and matplotlib v2.0.2.
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Network models
Distance-
dependent
connectivity

Neural units j ∈ X at location xj and i ∈ Y at xi in pre- and
postsynaptic populations X and Y , respectively.
Displacement between units i and j:

rij = xi − xj

Boxcar-shaped spatial profile with width R and Heaviside func-
tion Θ:

p (rij) =
1
2RΘ(R− |rij |)

Spiking model
Subthreshold
dynamics

If t > t∗ + τref

dV
dt = −V−EL

τm
+

Isyn(t)
Cm

Isyn (t) =
∑

j JjIPSC

(
t− t∗j − d

)

with connection strength Jj , presynaptic spike time t∗j
and conduction delay d

IPSC (t) = et/τsΘ(t) with Heaviside function Θ

else

V (t) = Vr

Spiking If V (t−) < Vθ ∧ V (t+) ≥ Vθ

1. set t∗ = t

2. emit spike with timestamp t∗

3. reset V (t) = Vr

Rate model

Differential
equation

τ du
dt = −u (t) +∑

j=1 wjψ (uj (t− d))

ψ (x) = tanh (x)

Figure 11. Description of network models. Separation between nonlinear
spiking and rate neurons as used in NEST simulations.
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A: Global simulation parameters
Symbol Value Description
Tsim 350ms Simulation duration
Ttrans 150ms Start-up transient
dt 0.1ms Temporal resolution

B: Populations and external input
Symbol Value Description
NE 4, 000 Population size of excitatory neurons
NI 1, 000 Population size of inhibitory neurons
L 1mm Domain length

Spiking model
µ 10mV Mean input relative to firing threshold
σ 10mV Variance of input relative to firing threshold
νE,ext 35085Hz � Excitatory external rate (by fixing working

point)
νI,ext 3683Hz � Inhibitory external rate (by fixing working

point)

C: Connection parameters
Symbol Value Description
RE 0.2mm � Profile width of excitatory neurons
RI 0.07mm � Profile width of inhibitory neurons
d 3ms � Delay

Spiking model
KE 400 In-degree from excitatory neurons
γ 0.25 Relative in-degree, γ = KI/KE

J
′

E 87.8 pA � Reference synaptic strength
g 5 � Relative synaptic strength, g = −JI/JE

Rate model
wE 2.73 � Excitatory weight (by parameter mapping)
wI −3.42 � Inhibitory weight (by parameter mapping)

D: Neuron model
Symbol Value Description

Spiking model
Cm 250 pF Membrane capacitance
τm 5ms Membrane time constant
EL −65mV Resting potential
Vθ −50mV Firing threshold
Vr −65mV Reset potential
τref 0ms Absolute refractory period
τs 0.5ms Postsynaptic current time constant

Rate model
τ 1.94ms Time constant (by parameter mapping)

Figure 12. Simulation and network parameters. Parameters according to
setting for traveling waves as shown in Fig 1D, Fig 5D and Fig 8C (black star marker).
Deviant parameters are given in the captions of the respective figures and indicated by
different markers.
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