000843536 001__ 843536
000843536 005__ 20220930130140.0
000843536 0247_ $$2doi$$a10.5194/bg-15-187-2018
000843536 0247_ $$2ISSN$$a1726-4170
000843536 0247_ $$2ISSN$$a1726-4189
000843536 0247_ $$2Handle$$a2128/17058
000843536 0247_ $$2WOS$$aWOS:000419815000003
000843536 0247_ $$2altmetric$$aaltmetric:31492454
000843536 037__ $$aFZJ-2018-01122
000843536 082__ $$a570
000843536 1001_ $$0P:(DE-Juel1)145951$$aPost, Hanna$$b0
000843536 245__ $$aEvaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates
000843536 260__ $$aKatlenburg-Lindau [u.a.]$$bCopernicus$$c2018
000843536 3367_ $$2DRIVER$$aarticle
000843536 3367_ $$2DataCite$$aOutput Types/Journal article
000843536 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552638159_21952
000843536 3367_ $$2BibTeX$$aARTICLE
000843536 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843536 3367_ $$00$$2EndNote$$aJournal Article
000843536 520__ $$aModeling net ecosystem exchange (NEE) at the regional scale with land surface models (LSMs) is relevant for the estimation of regional carbon balances, but studies on it are very limited. Furthermore, it is essential to better understand and quantify the uncertainty of LSMs in order to improve them. An important key variable in this respect is the prognostic leaf area index (LAI), which is very sensitive to forcing data and strongly affects the modeled NEE. We applied the Community Land Model (CLM4.5-BGC) to the Rur catchment in western Germany and compared estimated and default ecological key parameters for modeling carbon fluxes and LAI. The parameter estimates were previously estimated with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) for four of the most widespread plant functional types in the catchment. It was found that the catchment-scale annual NEE was strongly positive with default parameter values but negative (and closer to observations) with the estimated values. Thus, the estimation of CLM parameters with local NEE observations can be highly relevant when determining regional carbon balances. To obtain a more comprehensive picture of model uncertainty, CLM ensembles were set up with perturbed meteorological input and uncertain initial states in addition to uncertain parameters. C3 grass and C3 crops were particularly sensitive to the perturbed meteorological input, which resulted in a strong increase in the standard deviation of the annual NEE sum (σ ∑ NEE) for the different ensemble members from ∼ 2 to 3 g C m−2 yr−1 (with uncertain parameters) to ∼ 45 g C m−2 yr−1 (C3 grass) and ∼ 75 g C m−2 yr−1 (C3 crops) with perturbed forcings. This increase in uncertainty is related to the impact of the meteorological forcings on leaf onset and senescence, and enhanced/reduced drought stress related to perturbation of precipitation. The NEE uncertainty for the forest plant functional type (PFT) was considerably lower (σ ∑ NEE ∼ 4.0–13.5 g C m−2 yr−1 with perturbed parameters, meteorological forcings and initial states). We conclude that LAI and NEE uncertainty with CLM is clearly underestimated if uncertain meteorological forcings and initial states are not taken into account.
000843536 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000843536 536__ $$0G:(DE-Juel1)jicg41_20100501$$aBetter predictions with environmental simulation models: optimally integrating new data sources (jicg41_20100501)$$cjicg41_20100501$$fBetter predictions with environmental simulation models: optimally integrating new data sources$$x1
000843536 588__ $$aDataset connected to CrossRef
000843536 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b1$$eCorresponding author
000843536 7001_ $$00000-0002-8290-9837$$aHan, Xujun$$b2
000843536 7001_ $$0P:(DE-Juel1)144513$$aBaatz, Roland$$b3
000843536 7001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b4
000843536 7001_ $$0P:(DE-Juel1)144420$$aSchmidt, Marius$$b5
000843536 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6
000843536 773__ $$0PERI:(DE-600)2158181-2$$a10.5194/bg-15-187-2018$$gVol. 15, no. 1, p. 187 - 208$$n1$$p187 - 208$$tBiogeosciences$$v15$$x1726-4189$$y2018
000843536 8564_ $$uhttps://juser.fz-juelich.de/record/843536/files/bg-15-187-2018.pdf$$yOpenAccess
000843536 8564_ $$uhttps://juser.fz-juelich.de/record/843536/files/bg-15-187-2018.gif?subformat=icon$$xicon$$yOpenAccess
000843536 8564_ $$uhttps://juser.fz-juelich.de/record/843536/files/bg-15-187-2018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000843536 8564_ $$uhttps://juser.fz-juelich.de/record/843536/files/bg-15-187-2018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000843536 8564_ $$uhttps://juser.fz-juelich.de/record/843536/files/bg-15-187-2018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000843536 8564_ $$uhttps://juser.fz-juelich.de/record/843536/files/bg-15-187-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000843536 8767_ $$8Helmholtz-PUC-2018-12$$92018-04-04$$d2018-04-04$$eAPC$$jZahlung erfolgt$$pbg-2016-540
000843536 909CO $$ooai:juser.fz-juelich.de:843536$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000843536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b1$$kFZJ
000843536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144513$$aForschungszentrum Jülich$$b3$$kFZJ
000843536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b4$$kFZJ
000843536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144420$$aForschungszentrum Jülich$$b5$$kFZJ
000843536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000843536 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000843536 9141_ $$y2018
000843536 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000843536 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000843536 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000843536 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000843536 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOGEOSCIENCES : 2015
000843536 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000843536 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000843536 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843536 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843536 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000843536 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000843536 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000843536 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000843536 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000843536 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000843536 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843536 920__ $$lyes
000843536 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000843536 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000843536 980__ $$ajournal
000843536 980__ $$aVDB
000843536 980__ $$aI:(DE-Juel1)IBG-3-20101118
000843536 980__ $$aI:(DE-82)080012_20140620
000843536 980__ $$aAPC
000843536 980__ $$aUNRESTRICTED
000843536 9801_ $$aAPC
000843536 9801_ $$aFullTexts