000843580 001__ 843580
000843580 005__ 20210129232556.0
000843580 0247_ $$2doi$$a10.1111/nph.14496
000843580 0247_ $$2ISSN$$a0028-646X
000843580 0247_ $$2ISSN$$a1469-8137
000843580 0247_ $$2pmid$$apmid:28295374
000843580 0247_ $$2WOS$$aWOS:000402412500008
000843580 0247_ $$2altmetric$$aaltmetric:17294180
000843580 037__ $$aFZJ-2018-01165
000843580 041__ $$aEnglish
000843580 082__ $$a580
000843580 1001_ $$0P:(DE-HGF)0$$aOnoda, Yusuke$$b0$$eCorresponding author
000843580 245__ $$aPhysiological and structural tradeoffs underlying the leaf economics spectrum
000843580 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2017
000843580 3367_ $$2DRIVER$$aarticle
000843580 3367_ $$2DataCite$$aOutput Types/Journal article
000843580 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520350192_21022
000843580 3367_ $$2BibTeX$$aARTICLE
000843580 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843580 3367_ $$00$$2EndNote$$aJournal Article
000843580 520__ $$a    The leaf economics spectrum (LES) represents a suite of intercorrelated leaf traits concerning construction costs per unit leaf area, nutrient concentrations, and rates of carbon fixation and tissue turnover. Although broad trade-offs among leaf structural and physiological traits have been demonstrated, we still do not have a comprehensive view of the fundamental constraints underlying the LES trade-offs.    Here, we investigated physiological and structural mechanisms underpinning the LES by analysing a novel data compilation incorporating rarely considered traits such as the dry mass fraction in cell walls, nitrogen allocation, mesophyll CO2 diffusion and associated anatomical traits for hundreds of species covering major growth forms.    The analysis demonstrates that cell wall constituents are major components of leaf dry mass (18–70%), especially in leaves with high leaf mass per unit area (LMA) and long lifespan. A greater fraction of leaf mass in cell walls is typically associated with a lower fraction of leaf nitrogen (N) invested in photosynthetic proteins; and lower within-leaf CO2 diffusion rates, as a result of thicker mesophyll cell walls.    The costs associated with greater investments in cell walls underpin the LES: long leaf lifespans are achieved via higher LMA and in turn by higher cell wall mass fraction, but this inevitably reduces the efficiency of photosynthesis.
000843580 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000843580 588__ $$aDataset connected to CrossRef
000843580 7001_ $$0P:(DE-HGF)0$$aWright, Ian J.$$b1
000843580 7001_ $$0P:(DE-HGF)0$$aEvans, John R.$$b2
000843580 7001_ $$0P:(DE-HGF)0$$aHikosaka, Kouki$$b3
000843580 7001_ $$0P:(DE-HGF)0$$aKitajima, Kaoru$$b4
000843580 7001_ $$0P:(DE-HGF)0$$aNiinemets, Ülo$$b5
000843580 7001_ $$0P:(DE-Juel1)129384$$aPoorter, Hendrik$$b6$$ufzj
000843580 7001_ $$0P:(DE-HGF)0$$aTosens, Tiina$$b7
000843580 7001_ $$0P:(DE-HGF)0$$aWestoby, Mark$$b8
000843580 773__ $$0PERI:(DE-600)1472194-6$$a10.1111/nph.14496$$gVol. 214, no. 4, p. 1447 - 1463$$n4$$p1447 - 1463$$tThe new phytologist$$v214$$x0028-646X$$y2017
000843580 8564_ $$uhttps://juser.fz-juelich.de/record/843580/files/Onoda_et_al-2017-New_Phytologist.pdf$$yRestricted
000843580 8564_ $$uhttps://juser.fz-juelich.de/record/843580/files/Onoda_et_al-2017-New_Phytologist.gif?subformat=icon$$xicon$$yRestricted
000843580 8564_ $$uhttps://juser.fz-juelich.de/record/843580/files/Onoda_et_al-2017-New_Phytologist.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000843580 8564_ $$uhttps://juser.fz-juelich.de/record/843580/files/Onoda_et_al-2017-New_Phytologist.jpg?subformat=icon-180$$xicon-180$$yRestricted
000843580 8564_ $$uhttps://juser.fz-juelich.de/record/843580/files/Onoda_et_al-2017-New_Phytologist.jpg?subformat=icon-640$$xicon-640$$yRestricted
000843580 8564_ $$uhttps://juser.fz-juelich.de/record/843580/files/Onoda_et_al-2017-New_Phytologist.pdf?subformat=pdfa$$xpdfa$$yRestricted
000843580 909CO $$ooai:juser.fz-juelich.de:843580$$pVDB
000843580 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129384$$aForschungszentrum Jülich$$b6$$kFZJ
000843580 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000843580 9141_ $$y2018
000843580 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000843580 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW PHYTOL : 2015
000843580 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000843580 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000843580 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000843580 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000843580 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000843580 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843580 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000843580 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843580 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843580 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000843580 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000843580 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEW PHYTOL : 2015
000843580 920__ $$lno
000843580 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000843580 980__ $$ajournal
000843580 980__ $$aVDB
000843580 980__ $$aI:(DE-Juel1)IBG-2-20101118
000843580 980__ $$aUNRESTRICTED