001     843580
005     20210129232556.0
024 7 _ |a 10.1111/nph.14496
|2 doi
024 7 _ |a 0028-646X
|2 ISSN
024 7 _ |a 1469-8137
|2 ISSN
024 7 _ |a pmid:28295374
|2 pmid
024 7 _ |a WOS:000402412500008
|2 WOS
024 7 _ |a altmetric:17294180
|2 altmetric
037 _ _ |a FZJ-2018-01165
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Onoda, Yusuke
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Physiological and structural tradeoffs underlying the leaf economics spectrum
260 _ _ |a Oxford [u.a.]
|c 2017
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1520350192_21022
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The leaf economics spectrum (LES) represents a suite of intercorrelated leaf traits concerning construction costs per unit leaf area, nutrient concentrations, and rates of carbon fixation and tissue turnover. Although broad trade-offs among leaf structural and physiological traits have been demonstrated, we still do not have a comprehensive view of the fundamental constraints underlying the LES trade-offs. Here, we investigated physiological and structural mechanisms underpinning the LES by analysing a novel data compilation incorporating rarely considered traits such as the dry mass fraction in cell walls, nitrogen allocation, mesophyll CO2 diffusion and associated anatomical traits for hundreds of species covering major growth forms. The analysis demonstrates that cell wall constituents are major components of leaf dry mass (18–70%), especially in leaves with high leaf mass per unit area (LMA) and long lifespan. A greater fraction of leaf mass in cell walls is typically associated with a lower fraction of leaf nitrogen (N) invested in photosynthetic proteins; and lower within-leaf CO2 diffusion rates, as a result of thicker mesophyll cell walls. The costs associated with greater investments in cell walls underpin the LES: long leaf lifespans are achieved via higher LMA and in turn by higher cell wall mass fraction, but this inevitably reduces the efficiency of photosynthesis.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wright, Ian J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Evans, John R.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hikosaka, Kouki
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kitajima, Kaoru
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Niinemets, Ülo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Poorter, Hendrik
|0 P:(DE-Juel1)129384
|b 6
|u fzj
700 1 _ |a Tosens, Tiina
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Westoby, Mark
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1111/nph.14496
|g Vol. 214, no. 4, p. 1447 - 1463
|0 PERI:(DE-600)1472194-6
|n 4
|p 1447 - 1463
|t The new phytologist
|v 214
|y 2017
|x 0028-646X
856 4 _ |u https://juser.fz-juelich.de/record/843580/files/Onoda_et_al-2017-New_Phytologist.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843580/files/Onoda_et_al-2017-New_Phytologist.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843580/files/Onoda_et_al-2017-New_Phytologist.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843580/files/Onoda_et_al-2017-New_Phytologist.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843580/files/Onoda_et_al-2017-New_Phytologist.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843580/files/Onoda_et_al-2017-New_Phytologist.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:843580
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129384
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW PHYTOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEW PHYTOL : 2015
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21