000843608 001__ 843608
000843608 005__ 20210129232605.0
000843608 0247_ $$2doi$$a10.1088/1361-6420/aaa72d
000843608 0247_ $$2ISSN$$a0266-5611
000843608 0247_ $$2ISSN$$a1361-6420
000843608 0247_ $$2Handle$$a2128/17402
000843608 0247_ $$2WOS$$aWOS:000424014600002
000843608 037__ $$aFZJ-2018-01190
000843608 041__ $$aEnglish
000843608 082__ $$a530
000843608 1001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b0$$eCorresponding author
000843608 245__ $$aThe method of fundamental solutions for computing acoustic interior transmission eigenvalues
000843608 260__ $$c2018
000843608 3367_ $$2DRIVER$$aarticle
000843608 3367_ $$2DataCite$$aOutput Types/Journal article
000843608 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544596231_28838
000843608 3367_ $$2BibTeX$$aARTICLE
000843608 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843608 3367_ $$00$$2EndNote$$aJournal Article
000843608 520__ $$aWe  analyze  the  method  of  fundamental  solutions  (MFS)  in  two  different  versions  with  focus  on  the  computation  of  approximate  acoustic  interior  transmission  eigenvalues  in  2D  for  homogeneous  media.  Our  approach  is  mesh-  and  integration  free,  but  suffers  in  general  from  the  ill-conditioning  effects  of  the  discretized  eigenoperator,  which  we  could  then  successfully  balance  using  an  approved  stabilization  scheme.  Our  numerical  examples  cover many of the common scattering objects and prove to be very competitive in accuracy with the standard methods for PDE-related eigenvalue problems. We  finally  give  an  approximation  analysis  for  our  framework  and  provide  error  estimates,  which  bound  interior  transmission  eigenvalue  deviations  in  terms of some generalized MFS output.
000843608 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000843608 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000843608 588__ $$aDataset connected to CrossRef
000843608 7001_ $$0P:(DE-Juel1)168537$$aPieronek, Lukas$$b1$$eCorresponding author
000843608 773__ $$0PERI:(DE-600)1477292-9$$a10.1088/1361-6420/aaa72d$$gVol. 34, no. 3, p. 035007 -$$n3$$p035007$$tInverse problems$$v34$$x1361-6420$$y2018
000843608 8564_ $$uhttps://juser.fz-juelich.de/record/843608/files/Kleefeld_2018_Inverse_Problems_34_035007.pdf$$yRestricted
000843608 8564_ $$uhttps://juser.fz-juelich.de/record/843608/files/Kleefeld_2018_Inverse_Problems_34_035007.gif?subformat=icon$$xicon$$yRestricted
000843608 8564_ $$uhttps://juser.fz-juelich.de/record/843608/files/Kleefeld_2018_Inverse_Problems_34_035007.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000843608 8564_ $$uhttps://juser.fz-juelich.de/record/843608/files/Kleefeld_2018_Inverse_Problems_34_035007.jpg?subformat=icon-180$$xicon-180$$yRestricted
000843608 8564_ $$uhttps://juser.fz-juelich.de/record/843608/files/Kleefeld_2018_Inverse_Problems_34_035007.jpg?subformat=icon-640$$xicon-640$$yRestricted
000843608 8564_ $$uhttps://juser.fz-juelich.de/record/843608/files/Kleefeld_2018_Inverse_Problems_34_035007.pdf?subformat=pdfa$$xpdfa$$yRestricted
000843608 8564_ $$uhttps://juser.fz-juelich.de/record/843608/files/MFSInverseProblemsAKLP.pdf$$yOpenAccess
000843608 8564_ $$uhttps://juser.fz-juelich.de/record/843608/files/MFSInverseProblemsAKLP.gif?subformat=icon$$xicon$$yOpenAccess
000843608 8564_ $$uhttps://juser.fz-juelich.de/record/843608/files/MFSInverseProblemsAKLP.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000843608 8564_ $$uhttps://juser.fz-juelich.de/record/843608/files/MFSInverseProblemsAKLP.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000843608 8564_ $$uhttps://juser.fz-juelich.de/record/843608/files/MFSInverseProblemsAKLP.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000843608 8564_ $$uhttps://juser.fz-juelich.de/record/843608/files/MFSInverseProblemsAKLP.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000843608 909CO $$ooai:juser.fz-juelich.de:843608$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000843608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b0$$kFZJ
000843608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168537$$aForschungszentrum Jülich$$b1$$kFZJ
000843608 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000843608 9141_ $$y2018
000843608 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000843608 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000843608 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINVERSE PROBL : 2015
000843608 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843608 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000843608 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843608 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000843608 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000843608 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000843608 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000843608 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000843608 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000843608 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000843608 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843608 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000843608 980__ $$ajournal
000843608 980__ $$aVDB
000843608 980__ $$aI:(DE-Juel1)JSC-20090406
000843608 980__ $$aUNRESTRICTED
000843608 9801_ $$aFullTexts