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Abstract. We analyze the method of fundamental solutions (MFS) in
two different versions with focus on the computation of approximate
acoustic interior transmission eigenvalues in 2D for homogeneous
media. Our approach is mesh- and integration free, but suffers
in general from the ill-conditioning effects of the discretized
eigenoperator which we could then successfully balance using an
approved stabilization scheme. Our numerical examples cover many
of the common scattering objects and prove to be very competitive
in accuracy with the standard methods for PDE-related eigenvalue
problems. We finally give an approximation analysis for our framework
and provide error estimates which bound interior transmission
eigenvalue deviations in terms of some generalized MFS output.
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1. Introduction

Interior transmission eigenvalues (ITEs) arise in the study of inverse scattering
problems and were first introduced by Colton & Monk [19] and Kirsch [32]. They are
related to non-scattering response of specific incident waves which undergo a localized
transition of media with varying material properties. Therefore, ITEs can be seen
as fingerprints of an opaque object which recover information about its interior. As
such their investigation can be applied in many fields of current research such as in
non-destructive testing to detect inner integrities and abnormalities of heterogeneous
materials, see [9], or in medical imaging for organic tissue analysis, see [13]. We
refer to [10] for further discussions and applications. Altogether the accurate and
fast calculation of ITEs for arbitrary scattering shapes is a desired task in current
disciplines.

The underlying eigenoperator is associated to a system of Helmholtz-type
equations defined on the geometric support of the bounded scatterer and imposes
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coupled boundary data which makes the problem non-selfadjoint and non-elliptic.
Therefore, the characterization of ITEs requires an individual mathematical treatment
since standard approaches like those of elliptic theory are not applicable. New methods
such as the (generalized) linear sampling method, see [12, 2, 11], the factorization
method, see [33], and the inside outside duality method, see [34, 37], were developed
which gave deeper insights into the inverse scattering problem. From a numerical
point of view, techniques gained from these findings, but also the usual PDE solving
tools like finite element methods, see [43, 20, 7, 31, 30, 44, 40, 39, 28, 51, 54, 53, 26, 24,
29, 27, 52, 49, 38, 47, 48], or boundary integral equations, see [21, 22, 36, 55, 35], are
applicable and commonly used for ITEs. However, they either require the solution of
regularized inverse problems, or they include the generation of a computational grid
for the mathematical discretization of the scatterer followed by numerical integrations
of singular kernels or of many test functions, respectively, which make these strategies
in special cases too generic and numerically expensive.

In this paper, we want to present two further but simple, mesh- and integration-
free alternatives both of which use the Method of Fundamental Solution (MFS) with
prescribed source point locations as basic concept in order to compute acoustic ITEs
for isotropic, penetrable and homogeneous media in 2D. As a Trefftz-like collocation
method, the (discrete) MFS focuses on superposing a family of global solutions
to the targeted PDE from a given boundary value problem in order to fulfill the
assigned boundary data at selected boundary collocation points. For our purposes this
interpolation procedure then translates into a non-linear eigenproblem whose matrix
coefficients are holomorphic in the wave number. Our first method will make use of
this property for enabling Beyn’s algorithm from [6] as ultimate solution device to
finally recover approximate interior transmission eigenvalues including multiplicities
within a given contour in the complex plane. The latter was applied with respect
to transmission problems for the first time in [35] under boundary element methods
and proved great success for simple scattering objects in 3D. The main drawback is
that our MFS-based eigenproblem then becomes drastically ill-conditioned when the
number of trial functions exceeds a certain moderate threshold.

In order to circumvent this lack of conditioning, in a second attempt we try
to reuse an approach similar to the extended method of particular solutions (MPS)
suggested by Betcke & Trefethen in [5] in the context of Laplacian eigenvalues. Their
idea to free the polluted output from resistant trivial solutions stuck in the standard
version of the MPS is to introduce additional points in the interior of the scattering
domain at which unadulterated solutions would then have a distinguishably larger
norm. This control is due to the fact that only the more stable, unitary part
from the QR decomposition of the extended matrix system is utilized in the final
solution procedure. However, as Beyn’s algorithm cannot be provided then any more,
minimizers of certain singular values will serve as eigenvalue identifiers instead whose
determination we will restrict to the real-valued case for simplicity. In contrast, as the
general existence of transmission eigenvalues with non-vanishing imaginary part is still
an open question, the latter simplification might be reasonably accepted. For recent
investigations concerning the possible locality of ITEs, we refer to [45] and especially
for spherically stratified media to [20, 16, 50, 18, 17].

The remainder of this paper is structured as follows: In section 2 we will
introduce the interior transmission problem and derive its discretized MFS system to
be investigated in section 3. There we show up the weak points of the standard MFS
version and reproduce afterwards the successful extension from [5] for our framework
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accompanied by positive numerical results. The corresponding approximation analysis
will then be the focus of section 4. Finally, a conclusion will be given in section 5.

2. Problem statement

The acoustic interior transmission problem arises naturally as a special case of the
more general scattering problem: Given an incident wave ui and some homogeneous,
penetrable 2D scattering object mathematically represented by a bounded domain
D ⊂ R

2 (which corresponds to an unbounded 3D scatterer with planar symmetry),
the spatial transition of time harmonic waves is reflected by the following partial
differential equation:

∆u+ k2nu = 0 in R
2 . (1)

Here, n 6= 1 denotes some positive dispersion-free index of refraction which is constant
within D according to our modeling assumption and equal to unity in the exterior
Dc, k is the wave number, and u = ui + us is the superposition of the incident wave,
solving the Helmholtz equation in R

2 modulo possible point source locations outside
D, and its scattered response.

To obtain a physically plausible problem in which u represents an acoustic
pressure fields, for instance, we impose the two dimensional Sommerfeld radiation
condition

lim
r→∞

√
r (∂ru

s − ikus) = 0

which is to be understood uniformly in the angular direction and where r = |x| is
the radial component at position x ∈ R

2. If not stated otherwise, | · | in combination
with vectors in C

d for arbitrary dimension d ∈ {1, 2, 3, . . .} denotes the usual 2-norm
throughout this paper. It is well known that the direct scattering problem of finding
u is uniquely solvable, e.g. for u ∈ H1

loc(R
2), see [14]. As usual, Hm(Ω) is the Sobolev

space with respect to some open set Ω containing functions (which can additionally be
assigned boundary data (∼ Hm

0 (Ω)) or be restricted to local integrability properties
(∼ Hm

loc(Ω))) that are m times weakly differentiable with square integrable derivatives.
Closely related to the solvability of the associated inverse problem, but also

interesting for its own is the question whether there exist incident waves ui which
do not scatter, i.e. we now seek for solutions satisfying us = 0 in Dc. A necessary
criterion would be to find w = u|D and v = ui

|D which satisfy the so-called interior

transmission problem (ITP): Determine k ∈ C\{0} and non-trivial v, w ∈ L2(D) with
v − w ∈ H2

0 (D) solving in a distributional sense

∆w + k2nw = 0 in D ,

∆v + k2v = 0 in D ,

v = w on ∂D ,

∂νv = ∂νw on ∂D ,

(2)

where ν denotes the outer normal at the corresponding points of the boundary
∂D. Values of k fulfilling the above requirements are called interior transmission
eigenvalues. However, the existence of transmission eigenvalues does generally not
imply v to be extendible to all of R2 as a Helmholtz solution which then spoils the
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interpretation of being a non-scattering incident field for (1). Even worse, in [8] the
authors showed that for regions D with rectangular corners, interior transmission
eigenvalues can never be such non-scattering numbers whose eigenfunctions extend
globally.

A few words should also be noted about the regularity assumptions of (v, w): Since
we now work with a boundary value problem, zero boundary data seem appropriate
for the difference of v ∼ ui

|D and w ∼ u|D. As a consequence, the intuitive attempt

of interpreting (2) as a weak solution system in (v, w) in the usual componentwise
H1(D)-manner fails as this would result in a non-compact perturbation of an invertible
operator which inhibits the application of Fredholm theory, for example. However, our
particular assumption on the index of refraction being constant in D will then turn
out to regularize v and w as elements in H2(D) as long as ∂D is smooth enough.

Concerning the computation of eigenvalues, the accuracy obtained from finite
dimensional approximations can often be controlled in terms of some corresponding
eigenfunction error, see for example [23] or Corollary 6 below. Consistency would
then be linked to denseness properties of the approximation spaces. Due to our
homogeneity assumption within D, (2) can equivalently be interpreted as a coupled
Helmholtz system with interconnected wave numbers via the refractive index. In the
context of the ITP the standard implementation of MFS based upon the so called
“point-matching method” looks for radial basis functions divided into

Vm = {Φ1, . . . ,Φm} , Wm = {Ψ1, . . . ,Ψm} (3)

such that for all i = 1, . . . ,m, Φi and Ψi solve the Helmholtz equation exactly with
wave number κ and

√
nκ, respectively. Furthermore, the latter factor relation makes

it possible to correlate Φi and Ψi in a similar way and will even be implemented
later. Given a set of boundary points s1, . . . , sm ∈ ∂D, we now make the ansatz for
1 ≤ i ≤ m

vm(si) =

m∑

j=1

cΦj Φj(si) , wm(si) =

m∑

j=1

cΨj Ψj(si) (4)

and define the associated coefficient vector c ∈ C
2m by

c = (cΦ1 , . . . , c
Φ
m,−cΨ1 , . . . ,−cΨm)⊤ .

Next, we try to match the boundary conditions from (2) for all i = 1, . . . ,m in a
non-trivial way:

vm(si) = wm(si),

∂νvm(si) = ∂νwm(si).

The solvability of this system of linear equations is equivalent to finding values of
κ ∈ C\{0} for which

T (κ) ≡ Tm(κ) :=

(
SΦ(κ) SΨ(κ)
DΦ(κ) DΨ(κ)

)
(5)

is (approximately) singular. Here, the block matrix coefficients of T (κ) ∈ C
2m×2m are
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given componentwise by

(SΦ(κ))i,j = Φj(si) ,

(SΨ(κ))i,j = Ψj(si) ,

(DΦ(κ))i,j = ∂νΦj(si) ,

(DΨ(κ))i,j = ∂νΨj(si) ,

with 1 ≤ i, j ≤ m and reflect the Dirichlet and Neumann boundary data from vm and
wm, respectively. Finally, we interpret the derived system as the non-linear eigenvalue
problem

T (κ)c = 0 , c ∈ C
2m\{0} , κ ∈ C\{0} (6)

and expect its solutions, or those κ giving a sufficiently small right-hand side in
norm, to be close to some real interior transmission eigenvalue k from (2) for m large
enough. We will denote both by km within this paper and call them approximate ITEs
for now. Regarding the generation of T in detail, our basis functions from (3) will
consist of two wave-number-dependent families of radiating fundamental solutions to
the global Helmholtz equation, respectively. As convolution kernels, these consist of
two symmetrically interchangeable variables and solve the targeted PDE when fixing
one of them. Without loss of generality we will freeze the second variable, which
we will call sources due to their delta-induced singularities and place them strictly
outside of D on a sufficiently smooth closed curve Γ of finite Hausdorff measure.
Finally selecting finitely many source points {yj}1≤j≤m ⊂ Γ as parameters to obtain
the desired family of linear independent Helmholtz solutions Vm and Wm, respectively,
the resulting method solving (6) is called the MFS. An examplary setup may be seen
in Figure 1.

According to our above derivation, this particular choice of trial functions is
not the only one possible. But having in mind that solutions to the ITP might not
be globally extendible across ∂D in general, our ansatz can reflect this curtailing
behavior domain-independent and for free in polar form. Another advantage is that
the eigenoperator T then becomes holomorphic and matrix-valued in the κ argument
which enables us to apply a broader class of solution algorithms such as Beyn’s
algorithm.

3. Numerical Results

The MFS can be thought of as some discrete equivalent of an integral operator
realization generated by a singular kernel which solves the Helmholtz equation. Indeed,
let {Kκ(·, y)}y∈Γ be the 2D radiating fundamental solutions to the Helmholtz equation

with sources on Γ and wave number κ, i.e. Kκ(x, y) = H
(1)
0 (κ|x−y|) is the first Hankel

function with (κ|x − y|)-argument. Then, for any coefficient function g ∈ L2(Γ) the
continuous superposition

[K̂κg](x) :=

∫

Γ

Kκ(x, y)g(y) dy , x ∈ D (7)

also solves the same Helmholtz equation in D by linearity and equals the usual single
layer potential on Γ. A natural discretization of the integral in (7) with respect to
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D

yj ∈ ∂D

sj ∈ Γ

Figure 1. Examplary MFS setup: The dots represent the computational points
of the scattering and the source boundary, respectively.

the sources y and choosing κ = κ,
√
nκ, respectively, would finally result in linear

combinations of the form (4), which was exactly our initial MFS ansatz.
An immediate drawback arising from this conceptional integral operator

perspective is the following: Recall that in order to compensate finite precision
arithmetics of computers, we slightly relaxed the term of an approximate ITE in
the discrete setting (6) not to miss also rounded candidates giving sufficiently small
non-zero boundary contributions. However, containing approximations of compact
block operators K̂κ : L2(Γ) −→ H

3
2 (∂D) or the corresponding Neumann modifications

within T , these induce for each wave number κ, or equivalently for each κ, a decreasing
sequence of linear T (κ)-eigenvalues accumulating at zero when m tends to infinity.
This fact is likely to hinder the numerical distinction between approximations of exact
ITEs and arbitrary ones in disguise due to ill-conditioning in total. We will now
discuss two different approaches for solving the non-linear eigenvalue problem (6)
keeping that warning in mind. The first one, using Beyn’s algorithm, will show the
limiting effects of the underlying ill-conditioning with respect to the accuracy of the
eigenvalue approximation accompanied by additional pollution already in the case of
very simple scattering domains. In the subsequent section we will then see how to
circumvent these issues using Betcke’s & Trefethen’s interior-points-extension.

3.1. Using Beyn’s algorithm for the ITP

The first method we want to apply for solving (6) resulting from the MFS goes
back to W.-J. Beyn in [6] and since then it was positively tested in the context of
ITE computations using boundary integral equations in several papers such as in
[36, 35, 15]. The main benefit is, especially compared to our second approach that
will be presented in the next section, that the solution algorithm is more easily capable
for finding eigenvalues from (6) with their multiplicities inside a prescribed contour
located in the complex plane. The only relevant but restrictive condition for our cases
is that it requires T to be holomorphic in z which is automatically fulfilled thanks to
our MFS ansatz.
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For convenience of the reader, we recall the main idea of Beyn’s algorithm and
refer to his original paper for further details: The starting point is a generalization
of the Laurent series concept for scalar meromorphic functions to square matrix type
thanks to Keldysh’s theorem, see [42]. In this spirit, if T (km) ∈ C

2m×2m loses its
full rank at some km ∈ C so that T (κ)−1 becomes singular for κ −→ km, this blow-
up should be reflected in the generation of certain poles at km. Indeed, in a small
neighbourhood of any km fulfilling (6) exactly, we may write according to Keldysh

T−1(κ) = R(z) +

−1∑

i=−N(km)

Mi(κ− km)i ,

with N(km) ∈ N, rank-one matrix coefficients Mi ∈ C
2m×2m such that M−N(km) 6= 0

and R being a pure holomorphic matrix-valued function. In this way, the problem of
finding approximate ITEs km is decoupled into a pole analysis for each component.
Then, for any holomorphic function f , Cauchy’s integral formula yields for a
sufficiently close contour ΓC around km

1

2πi

∫

ΓC

f(κ)T−1(κ) dκ =

N(km)∑

i=1

f (i)(km)

i!
Mi .

It turns out that the above identity also holds for contours containing N different
T−1-poles k1m, . . . , kNm in analogy to the residue theorem so that we obtain in general

1

2πi

∫

ΓC

f(κ)T−1(κ) dκ =

N∑

j=1

N(kj
m)∑

i=1

f (i)(kjm)

i!
M

j
i . (8)

Since the values of kjm to be determined are now hidden in the implicit evaluation
of proper functions f , Beyn suggests the choice of a monomial basis whose highest
order depends on the number of T -eigenvalues inside of ΓC. Interpreting the resulting
expressions as constant matrices (assembled as higher dimensional blocks in the most
general case), systematic transformations including a singular value decomposition
finally lead to a linear eigenvalue problem whose eigenvalues coincide with k1m, . . . , kNm
including multiplicity encircled by ΓC.

Altogether, this procedure yields the guideline for Beyn’s algorithm. From the
numerical cost’s perspective we thus need to compute primarily

(i) complex contour integrals including matrix inversions according to (8),

(ii) a singular value decomposition,

(iii) a linear eigenvalue problem.

While the integration given in item (i) needs to be performed for all components
settled by the dimension of the non-linear eigenoperator T and the number of local
T -eigenvalues, its componentwise computation requires only little work except for
the explicit inversion of T (κ) ∈ C

2m×2m involved. For instance, the trapezoidal
rule admits exponential convergence due to the contour-induced periodicity of the
meromorphic integrands, implying the number of quadrature points to be uniformly
limited. Concerning the solution of the final linear eigenvalue problem there are
also no special difficulties so the common routines for matrices may be applied to
recover the N distinct eigenvalues kjm. The most delicate step is the singular value
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decomposition of an at least (2m × 2m)-matrix, but its effective size depends on the
frequency of locally enclosed T -eigenvalues that needs to be guessed. As a dimension
reduction improvement, Beyn suggests a rank-maintaining right-multiplication of (8)
with a rectangular random matrix. Similarly, an additional left-multiplication may
be applied as it was positively checked in [15]. However, such simplifications increase
the risk of a final rank drop and results in unexpected behavior of Beyn’s algorithm
in total.

In summary, this algorithm transforms a non-linear eigenvalue problem of the
form (6) into a linear one and manages to compute local eigenvalues including muli-
plicity on the expense of controllable numerical utilities.

For now we have everything together to present first numerical ITE results based on
the MFS combined with Beyn’s algorithm. To warm up we would like to present our
findings for the unit disc. This is an approved starting point as it is the easiest repre-
sentative for arbitrary analytical 2D domains through the conformal mapping theorem,
thus giving us a rough idea of what output quality could be generally expected. The
block matrices of the eigenoperator (5) become with the extracted notation from (7),
interpreting (2) as a Helmholtz system with wave numbers κ and

√
nκ, respectively

(SΦ(κ))i,j = Kκ(si, yj) ,

(SΨ(κ))i,j = K√
nκ(si, yj) ,

(DΦ(κ))i,j = ∂νKκ(si, yj) ,

(DΨ(κ))i,j = ∂νK√
nκ(si, yj) ,

(9)

where the normal derivative within the double layer kernels refer to the first argument
each, i.e. with respect to si for 1 ≤ i ≤ m. For simplicity of the second argument, we
distribute {yj}1≤j≤m ⊂ Γ equidistantly on a circle with radius R = 5.

Fortunately, the simple geometry makes it possible to compute ITEs almost
analytically by seeking for an exact Helmholtz solution pair (v, w) in polar coordinates
(r, ϕ) of Fourier-Bessel form

v(r, ϕ) = cvp sin(pϕ)Jp(κr) , w(r, ϕ) = cwp sin(pϕ)Jp(
√
nκr) (10)

where Jp denotes the Bessel function of the first kind with parameter p ∈ N0 and
cvp, c

w
p ∈ C. The fulfilment of ITP boundary conditions (2) for the unit disc (r = 1)

is then purely concentrated on the radial part of (10) and requires for a non-trivial
solution (v, w) via cvp that

det

(
Jp(κ) Jp(

√
nκ)

J ′
p(κ)

√
nJ ′

p(
√
nκ)

)
= 0

holds. In particular, fixing n = 4 and p = 1 as our benchmark values, one obtains
k ≈ 2.902608055212766 ∈ R as the real-valued root with smallest magnitude which is
the ITE we now want to seek with our numerical computations. Figure 2 shows the
output of the Beyn algorithm with MFS input and plots the absolute error measured
with respect to k for an increasing number of collocation points.

More precise, our utilized Matlab routine successively incremented the iterations
by 2 collocation points starting from m = 5 as no approximate eigenvalue was
found for m = 1, 3 yet and filtered the value matching k best inside of the contour
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Figure 2. Absolute eigenvalue deviation from the smallest ITE of the unit
disc computed with the standard MFS approach in combination with Beyn’s
algorithm.

ΓC := {3 + 0.5eit}t∈[0,2π] using double precision. The convergence history in Figure 2
shows that the decay is first supported by the increased number of collocation points
to a minimum of about 10 correct digits, but is then fatally dominated by the blow-up
of the condition number of the non-linear eigenoperator T locking any further gain in
accuracy. Furthermore, additional pollution of pseudo-eigenvalues comes into play for
larger values of m as foreseen at the beginning of the chapter, cf. Figure 3.

Our preliminary analysis indicates that we need an improvement of the standard
MFS when applied in ITE studies to obtain reliable data, especially when working
with more difficult domains D.

3.2. Using Betcke’s & Trefethen’s Algorithm for the ITP

From now on we will restrict to κ ∈ R>0 although our technique to be presented is
also applicable in the complex case. We have previously seen that a crucial step in
revealing real ITEs approximately under finite precision arithmetics is to filter spurious
eigenvalues from the actual, but so far numerically-indistinguishable ones. As some
positive remedy, Cossonnière, tackled by boundary integral methods, proposed in
[21] to integrate the fact that there cannot be purely imaginary ITEs by considering
a family of generalized linear eigenvalue problems instead which would read in our
discrete MFS case, adapting (6) correspondingly

T (κ)c = λT (iκ)c, c ∈ C
2m\{0}, κ ∈ R>0, λ ∈ C .
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Figure 3. Pollution of the eigenvalue output: From left to right with m =
20, 40, 60, respectively, the three plots show how Beyn’s algorithm in combination
with the MFS produces spurious eigenvalues when approximating the smallest
ITE of the unit disc within ΓC under increasing number of collocation points.

In this way, the critical accumulation point with respect to λ is shifted from 0 to −1
whereas λ = 0 indicates κ = km to be an approximate eigenvalue near a real ITE.

In the following, we want to introduce a different approach initiated by Betcke
& Trefethen for screening spurious eigenvalues which is also applicable to other PDE-
related eigenproblems. To understand the pollution from the abstract ITP perspective,
we consider the inhomogeneous (boundary condition) version of (2)

∆w̃ + k̃2nw̃ = 0 in D ,

∆ṽ + k̃2ṽ = 0 in D ,

ṽ − w̃ = f̃ on ∂D ,

∂ν(ṽ − w̃) = g̃ on ∂D ,

(11)

where ṽ, w̃ ∈ L2(D), ṽ − w̃ ∈ H2(D), f̃ ∈ H
3
2 (∂D) and g̃ ∈ H

1
2 (∂D). Then, it can be

shown, see [12], that there is a constant C̃ depending only on k̃ and D such that

‖ṽ‖L2(D) + ‖w̃‖L2(D) ≤ C̃
(
‖f̃‖

H
3
2 (∂D)

+ ‖g̃‖
H

1
2 (∂D)

)
,

provided k̃ is not an interior transmission eigenvalue. Although C̃ blows up for
k̃ −→ k, by fixing some value unequal to any ITE this estimate clearly shows that small
boundary contributions imply small interior norm of the k̃-associated pair (ṽ, w̃). As
a consequence, since T in (6) captures only the boundary parts of our trial functions,
spurious eigenvalues just arise as unintended global approximations of ṽ = w̃ = 0 in
D that need to be excluded within our computations.

Therefore, we want to include the information of the eigenfunction’s interior
behavior and extend the collection of m boundary collocation points {si}1≤i≤m on
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∂D by mI = const additional points {xi}1≤i≤mI
inside of D and likewise the block

matrix T from (5) to

T̃ (κ) :=




SΦ(κ) SΨ(κ)
DΦ(κ) DΨ(κ)
SI
Φ(κ) 0
0 SI

Ψ(κ)


 ∈ C

(2m+2mI)×2m . (12)

The structure of the appended SI
• -blocks is equal to those of the first line but now

evaluated at the mI interior points instead of at {si}1≤i≤m in (9). In order to
quantify a numerically robust filter that seeks for approximate eigenfunctions with
small boundary parts but relatively large interior contribution, we take over the
cleverly-integrated QR manipulation of Betcke & Trefethen proposed in [5]: Writing

T̃ (κ) = Q̃(κ)R̃(κ) =

(
Q(κ)
QI(κ)

)
R̃(κ) , with R̃(κ), Q(κ) ∈ C

2m×2m

we immediately see that ImT (κ) = ImQ(κ) provided R̃(κ) is unconditionally
invertible. The latter is a reasonable assumption since we believe in choosing mI

so large to exclude the overall possibility of non-trivial solutions to (11) that vanish

inside of D at that many points (note R̃(κ)c = 0 implies T̃ (κ)c = 0). Therefore,

any element q in the range of Q(κ), or equivalently q̃ ∈ Q̃(κ) with q̃|C2m = q, can be
identified with a pair (vm, wm) from (4) evaluated at our total (m + mI) points via

a proper coefficient vector c and there exists r ∈ C
2m such that q̃ = Q̃(κ)r. Keeping

in mind the task of minimizing the boundary-misfit-to-interior ratio, these algebraic
observations enable us to turn the non-linear eigenvalue problem from (6) into a

searching procedure for (almost) vanishing |q|-magnitudes of q̃ ∈ Q̃(κ) constrained
to |q̃| = 1. Since |q̃| = 1 ⇔ |r̃| = 1, this can be further shifted to a local minimization
in κ for the smallest singular value from the truncated boundary part Q(κ) and reads
in compact form

Minimize κ 7−→ min
r∈C2m,|r|=1

|Q(κ)r| ≡ σmin(Q(κ)) , κ ∈ U ⊂ R>0 . (13)

Again, we will call those arguments κ = km giving sufficiently small minima in (13)
approximate ITEs according to the identification

σmin(Q(km)) = |Q̃(κ)rm| = |(Q̃(κ)R̃(κ))(R̃(κ)−1rm)| = |T̃ (κ)(R̃(κ)−1rm)|

=

√√√√
m∑

i=1

(vm(si)− wm(si))2 + (∂ν(vm(si)− wm(si)))2
(14)

with the obvious rm-realization for (vm, wm). The sets U are introduced to isolate
contributions from distinct km when m is fixed. At this point, note that the QR-
improvement by Betcke & Trefethen is incompatible with Beyn’s algorithm as the
derived unitary part Q̃ of any holomorphic matrix-valued function is not holomorphic
any more in κ according to its global boundedness of each component prohibited by
Liouville’s well-known theorem from complex analysis unless Q̃ is already constant.
Still our Q̃-based reformulation of the original problem (6) will provide us now with
two major numerical advantages:
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First, if km is an approximate ITE such that σmin(Q(km)) is small, the following
calculation yields with the notation from (14)

mI∑

i=1

|vm(xi)|2 +
mI∑

i=1

|wm(xi)|2 = |T (km)(R̃(km)−1rm)|2

=|QI(km)R̃(km)R̃(km)−1rm|2 = |QI(km)rm|2

=|Q̃(km)rm|2 − |Q(km)rm|2 = 1− σmin(Q(km))2 ≈ 1 .

(15)

Consequently, km claims (vm, wm) to be significantly large in the interior and
effectively excludes its possibility of being a spurious approximate eigenvalue.
Conversely, the inclusion of candidates with small pointwise interior norm which was
the main cause for pollution in the old verion of MFS would now be penalized by large
boundary contributions and thus not be favoured within (13) at all.

Second, we shall show that if some κ is distant from any ITE with σmin(Q(κ)) ≫ 0
in exact arithmetic, then our updated MFS version is able to reject this undesired
sample as such numerically. Therefore, we want to show that the condition number
of Q(κ) stays harmless which follows easily from the fact that

∣∣∣∣∣∣Q(κ)−1
∣∣∣∣∣∣ = 1

σmin(Q(κ))

being relatively bounded by assumption and |||Q(κ)||| ≤
∣∣∣∣∣∣Q̃(κ)

∣∣∣∣∣∣ = 1, where |||·||| denotes
the spectral norm for matrices induced by | · |. We can even enforce σmin(Q(κ)) in the
considered regime to become nearly unity after multiplying the interior blocks SI

• by

a small number within T̃ (κ). This sometimes has the advantageous secondary effect
of globally polarizing the graph of κ 7→ σmin(Q(κ)) in (13) stronger as being almost
zero for approximate eigenvalues and close to unity otherwise. The latter constancy
comes from the fact that all singular values will be lifted due to the less weighting of
the interior part while being uniformly bounded from above by 1.

Remark 1. Note that in practice the system for computing c when σmin(Q(κ)) ≈ 0
is still very ill-conditioned. A numerically more stable but related procedure was later
suggested by Betcke in [4] for recovering the corresponding approximate eigenfunctions.
Likewise, the method can also be used for computing km in (13) by minimizing smallest
generalized singular values instead which, however, does not show any advantage here.

Altogether, our [5]-inspired MFS-adaption, which we will now refer to as extended
or modified MFS, indeed serves as a filter for extracting unbiased approximate ITEs,
at least from a theoretical point of view so far. To convince ourselves from the
practical benefit of this method, we present our results for the unit disc re-chasing
k ≈ 2.902608055212766 with varying m but fixed mI = 10. Concerning the location
of the computational points involved, we distributed the corresponding ones for the
boundary, the interior and the sources equidistantly on a circle with radius 1, 0.5
and 5, respectively. Unlike in our first attempt, Figure 4 clearly shows that the
recent approach is more stable when increasing the number m of boundary collocation
points and manages to approximate k for the unit disc up to machine precision.
Again, we used a Matlab routine for the ITE calculation with (+2)-increment for the
iteration within the plotted m-range and employed the specific function fminsearch
with optimization flag optimset(’TolX’,1e-16) as minimization tool. Repeating this
procedure for successively higher singular values σi in (13) instead of only for the
smallest one, the modified MFS shall also reveal the eigenvalue’s multiplicity by
counting identical minima in the wave number with respect to different singular values.
This is because singular vectors to different but sufficiently small σi, whose magnitude
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Figure 4. Absolute eigenvalue deviation with exponential decay from the smallest
ITE of the unit disc computed with the extended MFS.

still measures the boundary misfit similar to (14), correspond to linear independent
approximate eigenfunctions. According to this observation and Figure 5, we believe,
for instance, that the three smallest ITEs for the unit disc have multiplicity 2,1,2 in
increasing order, respectively. Apparently, Beyn’s algorithm is definitely superior to
the singular-value-based output in this aspect as the predicted multiplicity information
is automatically released then.

In order to get a feeling about how the extended MFS reacts to other popular
domains, we compare a family of consecutive shape deformations in the sequel and
explore their effects on the ITE approximation accuracy. First we want to focus on the
transition from a disc to several ellipses where we keep the major semi-axis fixed as
one and shrink the minor semi-axis step by step. For this we selected m equiangular
collocation points along the scattering boundary whereas the complementing source
points were distributed equidistantly on a circle with radius 5. The main code we
used for producing the ITE approximations was else - and in what follows will be
- the same as for the unit disc above under the modified MFS. The final output
is displayed in Figure 6: The determined values rely on a stable confidence regime
for those approximate ITEs associated to sufficiently large m for which the minimal
singular value in (13) was at least of order 10−10. If any tail-digit is put in brackets,
this indicates the existence of minor outliers within the computation obeying mostly
the acceptance threshold though. Obviously, the varying number of correct digits,
which we limited to a maximum of 15 in total due to possible round-off errors affecting
the last digit of double-precision numbers, suggests that the less a domain deviates
from the reference disc, the better the achievable accuracy of our computational ITE
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Figure 5. The graphs shows the first three smallest singular values of Q(κ)
including multiplicities for the unit disc with m = 30 collocation points. For
example, the local minimum around the smallest approximate ITE clearly
disappears for the third singular value which indicates that its eigenvalue
multiplicity is two.

b=1.0 b=0.8 b=0.5 b=0.3

Shape Specifier ITE 1 ITE 2 ITE 3 ITE 4

Ellipse (disc) semi axis=1 2.90260805521276 3.38419483954017 3.41205395159979 3.97647211159188
Ellipse semi axis=0.8 3.13534121519068 3.48518298654316 3.54733071042719 3.88430612796681
Ellipse semi axis=0.5 4.33068623074(1) 4.36895654200(3) 5.40918291160(8) 5.60124857917
Ellipse semi axis=0.3 6.552756364(5) 6.56055364(1) 8.0949566 8.1574357

Figure 6. First four approximate real-valued ITEs for ellipses with unitary major
semi-axis based on the modified MFS without multiplicity with n = 4. Digits
given in brackets underlay computational fluctuations but are expected to be
correct as well.
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ǫ=0.0 ǫ=0.1 ǫ=0.2 ǫ=0.3

Shape Specifier ITE 1 ITE 2 ITE 3 ITE 4

Deformed ellipse ǫ = 0.0 3.235703038847477 3.611128205541419 3.691028926072422 4.058250609789813
Deformed ellipse ǫ = 0.1 3.2763480279118 3.5945609393239 3.73942279460228 4.07208521966683
Deformed ellipse ǫ = 0.2 3.38239714(4) 3.61769602(6) 3.807719411(8) 4.127129460(5)
Deformed ellipse ǫ = 0.3 3.51642(2) 3.69403(2) 3.87530(5) 4.21836(6)

Figure 7. First four approximate real-valued ITEs for deformed ellipses based
on the modified MFS without multiplicity with n = 4. Digits given in brackets
underlay computational fluctuations but are expected to be correct as well.

output becomes. The same observation was also made in the next experiment, where
an ellipse with a semi-axes ratio of 0.75 was successively deformed to a kite shape and
whose parametrizations obey

t 7→ (0.75 cos(t) + ǫ cos(2t), sin(t)) , 0 ≤ t < 2π .

Actually, this family of scatterers was introduced in [15] for ITE recovery under
boundary integral methods which we may therefore use as further benchmark values,
too. The modified MFS responds to those domains in terms of the perturbation
parameter ǫ and equipped with equiangular boundary points according to Figure
7: While the location of source points only played a minor role regarding the
approximation quality for the stretched ellipses, it really matters here, where a radius
of 2 seems to be quite optimal when restricting Γ to concentric circles around the
deformed ellipses. In the context of pure Helmholtz boundary value problems and
smooth domains, see [3], the authors showed that convergence rates of the MFS depend
on how far eigenfunctions can be analytically continued over D which might serve as
a rule of thumb also in our ITE framework via the embracing radius of the source
points. However, we neither tried to optimize the forming of Γ further nor exploited
symmetries of the scatterers towards accuracy improvements as the results gained so
far proved the extended MFS to be more than competitive with the standard methods
for calculating ITEs. In particular, we were able to improve the results given in [15].

The situation gets worse if we consider non-smooth domains with corners, for
example regular polygons. Here, we were only able to extract about 4 decimal places
each with occasional individual improvements although we believe that the accuracy
augments again for sufficiently many corners since then the unit disc is approximated.
Our final results are listed in Figure 8 for polygonal edges of unit length each. They
were obtained by equidistant computational points without touching any corners and
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Shape ITE 1 ITE 2 ITE 3 ITE 4

Triangle 8.9666(38) 9.40511(3) 10.54934(3) 12.43355(8)
Square 5.47610(8) 6.10028(3) 6.18437(4) 6.65095(0)
Pentagon 4.0556(0) 4.6715(5) 4.7198 5.5188(4)
Hexagon 3.2562(0) 3.7745(4) 3.8132(2) 4.3429(6)

Figure 8. First four approximate real-valued ITEs for the first four regular
polygons based on the modified MFS without multiplicity with n = 4. Digits
given in brackets underlay computational fluctuations but are expected to be
correct as well.

with Γ as the circumference scaled with a factor of 1.5 away from the scattering
boundary.

The loss of accuracy may be explained here by the quintessence of [8] that
eigenfunctions cannot be locally extended around corners ofD at all. While we already
chose the source point as artificial singularities relatively close to the polygons in this
spirit, Γ is on the other hand constrained to lie disjoint around ∂D by the discretized
MFS formulation to avoid poles along the scattering boundary (deteriorating the well-
posedness of Dirichlet and Neumann data otherwise). Recently, an even more concrete
behavior of the eigenfunctions near singular points was given in [7].

Summing up, convergence rates in m apparently correlate with continuation
properties across ∂D of the eigenfunctions whose ITEs we try to approximate.
Likewise, but more obvious in terms of the singular value, the speed of convergence
with respect to the number of collocation points needed to reach the domain-specific
exactness seems to be controlled in terms of its complexity (e.g. m was typically larger
than 50 for the polygons to guarantee a significant accumulation of the computed ITEs
whereas the convergence history up to m = 40 was sufficient for the scaled ellipses).
While being sensitive for the boundary-related parameters, the MFS’ output hardly
shows any relevant dependency on the interior points which were therefore distributed
throughout on circles that are fully contained in the scatterer. Altogether, despite its
simple implementation, the modified MFS proved to be a very powerful and beneficial
alternative for ITE approximations whose weak points merely emerge in combination
with angled or too advanced domains.

In the next section, we want to provide an ITP-specific theoretical framework for
the modified MFS analysis and give some natural relation between σmin(Q(km)) and
the deviation of approximate eigenvalues km from the nearest exact one that was our
implicitly-believed guideline when generating our tables above.

4. Approximation analysis

As we want to investigate in what results could be expected in a limiting process
m −→ ∞ with respect to our computed approximate eigenfunctions (vm, vm) from
the modified MFS, we now turn our attention to the broader, continuous setting of
function spaces in the following and try to assimilate the discrete perspective thereby.
Regularity assumptions on ∂D and Γ will play a crucial role since we now want to
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control the behavior of the eigenfunctions along the total boundary instead of only at
m selected sample points. In what follows, Cℓ(D) will denote, as usual, the classical
space of functions on D being ℓ times continuously differentiable with m ∈ N and
C∞(D) :=

⋂
ℓ∈N

Cℓ(D). For getting a feeling in which function space our solutions
to be approximated could be, we state the following lemma and develop a proper
candidate space setup for the eigenfunctions afterwards. The crucial observation
regarding the ITP is that while the coupled system is non-elliptic (in the sense of
Agmon-Douglis-Nirenberg) in v and w, the difference v−w solves a fourth order scalar
elliptic equation which regularizes the problem for smooth domains and refractive
indices.

Lemma 1. Let ∂D be of class C4 (i.e. D is a C4-manifold with boundary ∂D

embedded in R
2) and let (v, w) be a solution to (2) with n|D ∈ R\{1} for some interior

transmission eigenvalue k > 0. Then v, w ∈ H2(D) ∩ C∞(D).

Proof. We set f := w − v and verify the identities

v = −∆f + k2nf

k2(n− 1)
and w = −∆f + k2f

k2(n− 1)
.

Therefore, the assertion follows if we can show that f ∈ H4(D)∩C∞(D). Fortunately,
f ∈ H2

0 (D) itself solves the (uniformly strongly) fourth order elliptic equation with
constant coefficients

∆2f + k2(n+ 1)∆f + k4nf = 0 in D

in a weak sense. Applying global elliptic regularity theory of general order, see [1] for
example, we may conclude that indeed f ∈ H4(D) due to the smoothness assumption
on ∂D as well as f ∈ Hℓ(D′) for every ℓ ∈ N and for all compactly contained D′ ⊂⊂ D

according to elliptic interior improvements which finally implies v, w, f ∈ C∞(D) by
the Sobolev Embedding Theorem.

From now on we assume that ∂D is of class C4, n|D ∈ R\{1} and k > 0. Since
interior transmission eigenfunctions are then actually in H2(D) × H2(D) instead of
only distributional solutions according to the above lemma, this encourages to define
the relaxed function space H by

H :=
⋃

κ∈R>0

H(κ) ,

where

H(κ) := A(κ)×A(
√
nκ)

and

A(κ) = {h ∈ H2(D) ∩ C∞(D) : ∆h+ κ
2h = 0} .

By comparing with the block matrix structure in (12), we see that T̃ (κ) reflects
in its first two block lines the pointwise deviation of coupled Dirichlet and
Neumann boundary data and then individually the evaluation at shared inner points,
respectively. From this point of view, T̃ (κ) may be considered as a measure for the
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quality of approximate eigenfunctions in the pointwise sense. In analogy, we may
now endow each H(κ) with the inner product (although we will not work with it as
such since we will rather treat the summands according to the offset below as induced
norms separately due to their opposed roles)

(a, b)H :=(a1 − a2, b1 − b2)
H

3
2 (∂D)

+ (∂ν(a1 − a2), ∂ν(b1 − b2))
H

1
2 (∂D)

+ (a1, b1)L2(D) + (a2, b2)L2(D)

(16)

using the abbreviations a = (a1, a2) ∈ H(κ) and b = (b1, b2) ∈ H(κ). Theorem 2 below
will show that the specific fractional Sobolev exponents within the boundary parts of
the inner product are the appropriate ones in order to extend the boundary difference
traces of any approximate eigenvector pair to a more convenient error function on
D whose interior norm is still proportionally small. Apart from that, presuming
an unobstructed conversion from our finite dimensional measurements to ‖ · ‖H, we
can now prove feasibility of the extended MFS embedded in the space H for ITE
approximations freed from eigenvalue pollution and discuss afterwards how to justify
the transitional assumptions.

Theorem 2. Assume {(vm, wm, km)}m∈N ⊂ H × R>0 and {(θDm, θNm)}m∈N ⊂
H

3
2 (∂D)×H

1
2 (∂D) are such that the following conditions hold:

(i) eigenvalue convergence: km −→ k ,

(ii) uniform interior bound: C−1 <
(
‖vm‖2L2(D) + ‖wm‖2L2(D)

)
< C for some C > 1

and for all m large enough,

(iii) approximate ITP: (ṽ, w̃, f̃ , g̃, k̃) = (vm, wm, θDm, θNm, km) is a solution of (11)
for all m large enough with identical refractive index n > 0 and asymptotically

vanishing boundary data
(
‖θDm‖

H
3
2 (∂D)

+ ‖θNm‖
H

1
2 (∂D)

)
−→ 0 with respect to m.

Then, there exists a distributional solution (v, w) ∈ H of (2) with interior transmission
eigenvalue k.

Proof. We aim to bound ‖vm − wm‖H2(D) uniformly in m to extract a weakly
convergent subsequence of {(vm, wm)}m∈N with correctly coupled boundary data
whose limit is then our solution candidate.

Indeed, weak L2(D)-compactness directly yields (modulo subsequences which
we will not relabel in m) that vm ⇀ v and wm ⇀ w in L2(D) thanks to our
uniform bounds from (ii). Furthermore, v and w are distributional solutions to the
Helmholtz equation with wave number k and

√
nk, respectively, since for all smooth

and compactly supported ϕ in D we have by the third assumption

∫

D

v(∆ϕ+ k2ϕ) dx = lim
m→∞

∫

D

vm(∆ϕ+ k2mϕ) dx

= lim
m→∞

∫

D

ϕ (∆vm + k2mvm)︸ ︷︷ ︸
=0

dx = 0 .

The same calculation with adapted wave number holds true for w so we are left to
prove that (v − w) ∈ H2

0 (D) and (v, w) 6= 0:



The MFS for computing interior transmission eigenvalues 19

Let us now bound ‖vm − wm‖H2(D). According to [41], for every m there exists
a lifting function θm ∈ H2(D) such that θm|∂D = θDm, ∂νθm|∂D = θNm and

‖θm‖H2(D) ≤ c
(
‖θDm‖

H
3
2 (∂D)

+ ‖θNm‖
H

1
2 (∂D)

)
(17)

for some c > 0. The triangle inequality shows

‖vm − wm‖H2(D)

≤‖vm − wm − θm‖H2(D) + ‖θm‖H2(D)

≤‖vm − wm − θm‖H2
0 (D) + c

(
‖θDm‖

H
3
2 (∂D)

+ ‖θNm‖
H

1
2 (∂D)

)

and it remains to find an upper threshold for the first summand due to assumption
(iii). However, since for all u ∈ H2

0 (D) and some domain specific constant c̃ > 0 it
holds that ‖u‖H2

0 (D) ≤ c̃‖∆u‖L2(D) by elliptic a priori estimates, see [25], it suffices to
bound ‖∆(vm − wm − θm)‖L2(D) uniformly in m. Fortunately, vm and wm fulfill the
Helmholtz equation exactly with wave numbers km and

√
nkm, respectively, so the

Laplacian can be easily controlled by

‖∆(vm − wm − θm)‖L2(D)

≤‖∆vm‖L2(D) + ‖∆wm‖L2(D) + ‖∆θm‖L2(D)

≤km‖vm‖L2(D) + nkm‖wm‖L2(D) + c
(
‖θDm‖

H
3
2 (∂D)

+ ‖θNm‖
H

1
2 (∂D)

)

≤(sup
m

|km|)(max{n, 1})
√
C + c

(
sup
m

(
‖θDm‖

H
3
2 (∂D)

+ ‖θNm‖
H

1
2 (∂D)

))
< ∞ .

In the last line, we utilized all bounding assumptions from our theorem and have
altogether shown that supm ‖vm − wm‖H2(D) < ∞. Therefore, we have (taking a
further subsequence in m) that (vm − wm) ⇀ d∗ in H2(D). By assumption (iii) in
combination with (17) we thus conclude that the weak limit of (vm − wm) in H2(D)
and that of (vm−wm− θm) in H2

0 (D) coincide, so that we actually have d∗ ∈ H2
0 (D).

By linearity we also know that (vm − wm) ⇀ (v − w) in L2(D) and uniqueness of
corresponding weak limits finally implies d∗ = (v − w) ∈ H2

0 (D).
It remains to show that (v, w) 6= 0. For this we use the fact that the embedding

H2(D) →֒ H1(D) is compact which implies (vm−wm) −→ (v−w) strongly in H1(D)
and in particular with respect to L2(D). Having this in mind we observe that (v, w)
would be a non-trivial solution of (2) with ITE k if ‖v − w‖L2(D) > 0. Therefore we
assume contrarily that (vm − wm) −→ 0 in L2(D). Since the ITP consists of linear
PDEs with real-valued eigenvalues under consideration, we may continue with either
the real or imaginary parts of (vm, wm) without relabeling them such that condition
(ii) is still fulfilled (with a possibly larger constant C). Then our artificial assumption
yields

lim inf
m→∞

(vm, wm)L2(D) = lim inf
m→∞

‖vm‖2L2(D) + ‖wm‖2L2(D)

2
≥ 1

2C
> 0 .

Note that we cannot transfer this lower bound to (v, w) as {(vm, wm)}m∈N converges
only weakly. The desired contradiction still arises by applying Green’s formula twice
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and incorporating (the real part of) the lifting function from above again in the form

0 6= lim inf
m→∞

k2(1− n)(vm, wm)L2(D)

= lim inf
m→∞

∫

D

wm∆vm − vm∆wm dx

= lim inf
m→∞

∫

∂D

wm∂νvm − vm∂νwm ds

= lim inf
m→∞

∫

∂D

wm∂ν(vm − wm)− (vm − wm)∂νwm ds

= lim inf
m→∞

∫

∂D

wm∂νθm − θm∂νwm ds

= lim inf
m→∞

∫

D

θm∆vm − vm∆θm dx

= lim inf
m→∞

∫

D

θm(−k2mvm)− vm∆θm dx

= lim inf
m→∞

∫

D

vm(−k2mθm −∆θm) dx

= 0 ,

where the last equality follows from (17), (iii) and

∣∣∣∣
∫

D

vm(−k2mθm −∆θm) dx

∣∣∣∣ ≤ sup
m

{1, |k2m|} ‖vm‖L2(D)︸ ︷︷ ︸
≤C

‖θm‖H2(D) −→ 0 .

Comparing with the concrete information provided by our practically
implemented version of the modified MFS when neglecting minor discretization
effects, we see that assumptions (i) − (iii) of Theorem 2 can be reasonably checked
during the computational procedure: The triple sequence {(vm, wm, km)}m∈N arises
as realizations of (14), so the first question whether the calculated {km} are Cauchy
or not can be answered by inspection of the programme’s output. Next, (ii) is a
consequence of (15). However, we did not state this condition in an almost equality
form within the theorem’s requisites although the latter reference might suggest that
we have unit interior norm control apart from a small tolerance associated to the
vanishing pointwise boundary misfit. The reason for our weaker formulation is that it
is only the finite dimensional Euclidean norm giving that sharp QR-based lower bound
for the inner points which needs to be coherently adopted to the governing continuous
setting. Therefore, we demand that mI is large enough but fixed to have a better
chance of obtaining also a derived interior control with respect to ‖·‖L2(D) for (vm, wm)
as necessarily demanded by the uniform bounds from (ii), especially the lower one.
This perspective also encourages the optimization to locate x1, . . . , xmI

according to
quadrature schemes inside of D or sample them randomly in the sense of Monte-
Carlo-based integral estimates. Finally, the third criterion follows from the properties
of our MFS trial functions being particular solutions of (11) in combination with the
positively-observable decreasing minimal singular values from (14) which thus serve
as trend for the requested vanishing boundary misfit under the boundary-restricted
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H-metric. To transfer from these so far tangential-derivatives-free collocation samples
to fractional Sobolev norms as required in (iii) even more consistently, one could
alternatively add higher-order point evaluations to the boundary-related blocks of the
discrete operator T̃ from (12). In total, the statements of Theorem 2 can indeed be
considered as the continuous generalization of the modified MFS characteristics.

The sceptical question may arise whether the approximation properties of our
translationally-superposed radiating fundamental solutions in focus are sufficient to
expect the vanishing-boundary-misfit condition from Theorem 2(iii) in the limit
m −→ ∞ whenever there is a real ITE to be detected. Since the practically-oriented
ansatz (4) is only a discretized version of (7), we will now assume approximate ITP
eigenfunctions to be of the more general form

vm = K̂κg
m
v and wm = K̂√

nκg
m
w , (18)

where gmv , gmw ∈ L2(Γ).

Remark 2. In order to always refer back from any of the outcomes based on (18)
in the sequel to the discrete case associated to (4), note that any h ∈ A(κ) of the
form h = K̂κg with g ∈ L2(Γ) can still be approximated by finite linear combinations
of translated fundamental solutions even with respect to any Cℓ(D)-norm according
to the following procedure: partition Γ into m disjoint connected fractions {γi}1≤i≤m

with identical arclength and define the approximation kernel Km
κ : Γ×D −→ R by

Km
κ (x, y) =

m∑

i=1

1γi
(y)Kκ(x, yγi

) ,

where 1γi
denotes the indicator function on the set γi and yγi

∈ γi. Analogue to (7)

also the kernel is associated to an operator K̂m
κ generating smooth Helmholtz solutions

on D by

[K̂m
κ g](·) :=

∫

Γ

Km
κ (·, y)g(y) dy =

m∑

i=1

cγi
Kκ(·, yγi

) (19)

with the identification

cγi
:=

∫

γi

g(y)ds(y) (20)

in accordance to (4). Since Kκ can be reduced to a one dimensional function, whose
derivatives up to any order are uniformly continuous for positive arguments exceeding,
for instance, dist(Γ, ∂D), we may estimate for any integer ℓ ≥ 0

sup
x∈D

∣∣∣∂ℓ(K̂m
κ g − K̂g

κ)
∣∣∣ ≤ sup

x∈D

m∑

i=1

∫

γi

∣∣∂ℓ
x

(
Kκ(x, yγi

)−Kκ(x, y)
)∣∣ |g(y)|ds(y) .

Since
∣∣|x− yγi

| − |x− y|
∣∣ ≤ |y − yγi

|, there exists a Lipschitz constant Lℓ
κ such that

∣∣∂ℓ
x

(
Kκ(x, yγi

)−Kκ(x, y)
)∣∣ ≤ Lℓ

κ |y − yγi
| ≤ Cℓ

κ

m
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for some Cℓ
κ > 0. Thus the last integral expression can be further estimated,

incorporating S :=
∫
Γ
ds(y) < ∞, by

sup
x∈D

∣∣∣∂ℓ(K̂m
κ g − K̂g

κ)
∣∣∣ ≤ sup

x∈D

m∑

i=1

∫

γi

Cℓ
κ |g(y)|
m

ds(y) ≤ Cℓ
κ

√
S‖g‖L2(Γ)

m

m−−−→ 0 ,

where we used the Cauchy-Schwartz inequality in the last step. The discrete
approximation assertion for classical norms follows by definition, accumulating the
left suprema over ℓ.

Fortunately, we can prove a positive density result for both our discrete and
continuous MFS trial functions by tracing back the analysis to the Helmholtz equation.
As a first step, let us show that the range of K̂κ is dense in A(κ) with respect to L2(D)
for every κ > 0 and discuss afterwards how to apply this to the more sophisticated
ITP with its coupled boundary data.

Theorem 3. Let κ ∈ R>0 be any wavenumber and consider the 2D single layer
potentials

K̂κ : L2(Γ) −→ A(κ)

from (7), respectively, whose kernels fulfil the Sommerfeld radiation condition. If Γ is
of class C2, it holds that the range of Kκ is dense in A(κ) with respect to L2(D).

Proof. We aim to show that the L2(D)-adjoint of K̂κ given by

K̂∗
κ : L2(D) −→ L2(Γ) , [K̂∗

κh](·) =
∫

D

Kκ(·, x)h(x) dx

is injective on A(κ) (the closure taken with respect to L2(D)) which would then give
the desired density result according to the fact that the null space of K̂∗

κ equals the
L2(D)-orthogonal complement of the range of K̂κ . Hence, we assume that h ∈ A(κ)

is such that K̂∗
κh = 0 which means that the function h̃ := K̂∗

κh, which extends to R
2

naturally as the outcome of a convolution, solves the following equations

∆h̃+ κ
2h̃ = −h in D

∆h̃+ κ
2h̃ = 0 in Dc

h̃ = 0 on Γ .

By the theory of volume potentials, we infer that h̃ ∈ H2
loc(R

2) and inherits the
Sommerfeld radiation condition from the integral kernel thanks to the additional
conjugation within the definition of h̃. Hence, by uniqueness of the exterior Dirichlet
problem for the Helmholtz equation, see for example [10], we may conclude that

h̃|Ωc = 0, where Ω is the exhausting set such that ∂Ω = Γ. By analyticity, h̃ also
vanishes in Dc and can be considered as an element in H2

0 (D). Now by assumption,
h is still a distributional solution of the Helmholtz equation with wave number κ in
D and may be tested against h̃ which yields

0 =

∫

D

(∆h̃+ κ
2h̃)h dx = −‖h‖L2(D) .

As a consequence, K̂∗
κ is injective, or equivalently, K̂κ has dense range in A(κ) with

respect to L2(D) and the theorem is proved.
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Remark 3. Note that in general one cannot waive any additional structure of the
fundamental solution kernel Kκ such as the radiating property while keeping the same
density results for any admissible Γ. For example, working only with the singular
imaginary part of Kκ derived from the first Hankel function, i.e. with Bessel functions
of the second kind, in the case of D being a ball surrounded by Γ as a concentrated
sphere, its distance to ∂D can be chosen such that our reduced kernel with its source
terms on Γ totally vanishes at the midpoint of D. However, since L2-density results
can be extended to local higher order ones including C0-estimates in the interior as will
be demonstrated in the following, we would consequently not be able to approximate
Helmholtz functions that vanish at the midpoint in L2(D) any more.

Up to now the A(κ)-density properties assured by Theorem 3 for functions
generated by (18) are a priori too weak to crush any kind of corresponding boundary
approximations down to zero in the limiting process m −→ ∞ with respect to any
non-negative Sobolev norm. So we aim to improve the current state endowing the
range of K̂κ more strongly with H2(D) which still contains the full set of exact ITP
solutions according to Lemma 1. In [46] (Theorem 2) Weck showed for positive κ

that a similar result indeed holds but he performed the proof for the case of Herglotz
wave functions as dense subset in focus, i.e. under the assumption that Kκ in (7)
represents planar waves instead of translated fundamental solutions. His main idea was
to construct via a clever fixed point argument for any h ∈ A(κ) a H2(D)-convergent
sequence of smooth Helmholtz solutions hm living on slightly larger domains Dm

and which can be reapproximated on D ⊂⊂ Dm by Herglotz wave functions via
higher order interior estimates bounded in terms of the augmented L2(Dm)-norm
by ellipticity. Fortunately, the only Herglotz-specific fact that Weck utilized while
proving the latter was an initial L2 density result analogue to ours (with D replaced
by Dm in our Theorem 3 for m large in order not to intersect with Γ) and regularity
assumptions on D which therefore enable us to directly adopt these findings to our
MFS framework, too. We summarize them in the following corollary and relist all
necessary requirements:

Corollary 4. Let Γ be of class C2, ∂D be of class C4 and assume that n is constant
within D. Then, for any positive ITE k the assumptions of Theorem 2 can be fulfilled
by approximate functions (vm, wm) of the form (18) whose Helmholtz kernels are
radiating. In particular, the extended MFS embedded in H is capable for detecting
all real-valued ITEs.

Proof. Let k be any positive ITE and (v, w) any corresponding eigenfunction pair
fulfilling (2). According to Lemma 1, v and w are each smooth solutions of the
Helmholtz equation and due to our recent density improvement adopted from [46]
there exist sequences {vm}m∈N, {wm}m∈N of the form (18) approximating v and w

with respect to H2(D), respectively. In particular, if we set km := k for all m ∈ N we
obtain for a domain specific constant c > 0

‖vm − wm‖
H

3
2 (∂D)

+ ‖∂ν(vm − wm)‖
H

1
2 (∂D)

≤‖vm − v‖
H

3
2 (∂D)

+ ‖w − wm‖
H

3
2 (∂D)

+ ‖∂ν(vm − v)‖
H

1
2 (∂D)

+ ‖∂ν(w − wm)‖
H

1
2 (∂D)

≤c
(
‖vm − v‖H2(D) + ‖wm − w‖H2(D)

)
−→ 0
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and

0 < C−1 < lim inf
m→∞

(‖vm‖L2(D) + ‖wm‖L2(D)) = ‖v‖L2(D) + ‖w‖L2(D)

= lim sup
m→∞

(‖vm‖L2(D) + ‖wm‖L2(D)) < C

for some proper C > 1.

A last subtlety should be mentioned about the previous corollary when dealing
with approximations under finite precision arithmetics. If k is any ITE with
eigenfunction pair (v, w), then we know that there is a sequence of coefficient functions

{(gmv , gmw )}m∈N ⊂ L2(Γ) and discretized operators {(K̂m
κ , K̂m√

nκ
)}m∈N as in (19) such

that

K̂m
κ gmv −→ v ,

K̂m√
nκg

m
w −→ w ,

with respect to any of the infinite dimensional norms we discussed above. The
attendant errors for fixed m are unavoidable in the left hand sides but they still
approach zero in the limiting process. Note by compactness of the operators involved
we cannot transfer back to any relation among the coefficient functions {(gmv , gmw )}m∈N.
The worst-case scenario occurs if computational rounding errors come into play
and (v, w) is not in the operator range itself but only in the closure which implies
‖gmv ‖L2(Γ) −→ ∞ or ‖gmw ‖L2(Γ) −→ ∞. Assume without loss of generality the first

case and that K̃m
κ is a slight perturbation of K̂m

κ . Denoting by ǫm the operator misfit
in terms of any convenient metric, the potential total error between the eigenfunction
reapproximations, here K̂m

κ gmv and K̃m
κ gmv , would be of order ǫm times the norm of

‖gmv ‖L2(Γ) where the latter blows up by assumption.
However, hope is given in practice if we have a closer look on the relation between

the exploding coefficient functions gmv and their discrete equivalents denoted by cmv in
the style of (20). Then the length of the corresponding average fractions γi scales like
m−1, so we may infer with Jensen’s inequality

|cmv |2 =
m∑

i=1

(∫

γi

gmv (y) ds(y)

)2

=
m∑

i=1

H1(γi)
2

(
1

H1(γi)

∫

γi

gmv (y) ds(y)

)2

≤
m∑

i=1

H1(Γ)

m

∫

γi

gmv (y)2 ds(y) =
H1(Γ)

m

m∑

i=1

∫

γi

gmv (y)2 ds(y) =
H1(Γ)

m
‖gmv ‖2L2(Γ) .

Hence, if the coefficient functions do not grow stronger than the square root of m,
the discrete MFS should effectively be invisible with respect to L2-norm blow-ups
and the transferred vector norm keeps uniformly bounded in m. Consequently, in
agreement with Barnett and Betcke’s observation from [3], for practical applications
of the modified MFS we expect absolute errors in the boundary approximations to be
finally limited by the order of ǫm, i.e. machine precision, times the uniform coefficient
vector bound, if the latter exists.

It now appears natural to seek for an estimate which bounds the absolute error
between approximate and its corresponding exact eigenvalue in terms of the boundary
misfit of the approximate eigenfunctions. This will be done again in the continuous
framework and holds as long as some vanishing integral constraint is disobeyed. Such a
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relation also justifies heuristically why in our numerical experiments from the previous
section it was mostly observed that the smaller the computed minimal singular value
from (13) is (or equivalently the discrete boundary misfit according to (14)), the
better the accuracy of the approximate eigenvalue becomes. Furthermore, note that
eigenvalue deviations will already be controlled in the corresponding weaker norms
L2(∂D) which is more in the spirit of our discretized MFS output data unlike the more
sophisticated H-measurements in Theorem 2 necessary to prove that accumulation
points of {km}m∈N are indeed unpolluted ITEs.

Lemma 5. Let (v, w) be an ITP eigenfunction pair with ITE k and assume that

(ṽ, w̃) ∈ H(k̃) under the same index of refraction n. If
∣∣∣∣∣

∫

D

(vṽ − nww̃) dx

∣∣∣∣∣ ≥ ε̃ 6= 0 ,

then there exists a constant C̃ > 0 which depends only on the boundary data of v, w
and on ε̃ such that for all (ṽ, w̃) with the above ε̃-property it holds that

|k2 − k̃2| ≤ C̃
√
‖ṽ − w̃‖2

L2(∂D) + ‖∂ν(ṽ − w̃)‖2
L2(∂D) . (21)

Proof. Integration by parts in combination with the Helmholtz equation yields

k2
∫

D

(ṽv − nw̃w) dx

=

∫

D

(−ṽ∆v + w̃∆w) dx

=

∫

D

∇ṽ · ∇v dx−
∫

D

∇w̃ · ∇w dx−
∫

∂D

(ṽ − w̃) ∂νw︸︷︷︸
=∂νv

ds

=

∫

D

(−v∆ṽ + w∆w̃) dx+

∫

∂D

∂ν(ṽ − w̃)w ds−
∫

∂D

(ṽ − w̃)∂νw ds

= k̃2
∫

D

(ṽv − nw̃w) dx+

∫

∂D

∂ν(ṽ − w̃)w ds−
∫

∂D

(ṽ − w̃)∂νw ds ,

or equivalently in rearranged form

(k2 − k̃2)

∫

D

(ṽv − nw̃w) dx =

∫

∂D

∂ν(ṽ − w̃)w ds−
∫

∂D

(ṽ − w̃)∂νw ds .

Taking absolute values gives

∣∣k2 − k̃2
∣∣ ≤ 1

ε̃

(∫

∂D

|∂ν(ṽ − w̃)w| ds+
∫

∂D

|(ṽ − w̃)∂νw| ds
)

and applying the Cauchy Schwartz inequality twice results in

∣∣k2 − k̃2
∣∣ ≤ 1

ε̃

(
‖∂ν(ṽ − w̃)‖L2(∂D)‖w‖L2(∂D) + ‖ṽ − w̃‖L2(∂D)‖∂νw‖L2(∂D)

)

≤

√
‖w‖2

L2(∂D) + ‖∂νw‖2L2(∂D)

ε̃

√
‖ṽ − w̃‖2

L2(∂D) + ‖∂ν(ṽ − w̃)‖L2(∂D)‖2 .

Obviously, we may choose C̃ :=

√
‖w‖2

L2(∂D)
+‖∂νw‖2

L2(∂D)

ε̃
< ∞ and the lemma is

proven.
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As the applicability of (21) depends on the compliance of the integral
constraint for each approximate eigenfunction pair, the following corollary shifts
this responsibility for ITE approximations based on the extended MFS procedure
embedded in H, cf. Theorem 2, only to the limitting eigenfunction. Note that the
delicate minus sign within the definition of ε̃ is still due to the non-elliptic nature of
the interior transmission problem.

Corollary 6. Let the conditions of Theorem 2 hold for (v, w) and let (v′, w′) be any
(other) solution of the ITP with identical ITE k. Assume that the following non-
vanishing integral relation is satisfied

∫

D

(vv′ − nww′) dx 6= 0 . (22)

Then, for sufficiently large m ∈ N, the approximate ITEs km associated to the
constructed, weakly convergent subsequence of {(vm, wm)} ⊂ H from Theorem 2 are
controlled by

|k2 − k2m| ≤ C
√
‖vm − wm‖2

L2(∂D) + ‖∂ν(vm − wm)‖2
L2(∂D)

≤ C

√
‖vm − wm‖2

H
3
2 (∂D)

+ ‖∂ν(vm − wm)‖2
H

1
2 (∂D)

,
(23)

where C > 0 only depends on v′, w′ and the magnitude of (22).

Proof. By weak convergence we know that

∫

D

(vmv′ − nwmw′) dx −→
∫

D

(vv′ − nww′) dx 6= 0 .

Thus for large m and some ε̃ > 0 it must also hold that

∣∣∣∣∣

∫

D

(vmv′ − nwmw′) dx

∣∣∣∣∣ ≥ ε̃ , (24)

so the assertion follows with Lemma 5.

Remark 4. We verified numerically for our primary benchmark case with parameters
n = 4 and the smallest real-valued ITE of the unit disc k ≈ 2.902608055212766 that
the integral from (22), choosing v = v′, w = w′ based on (10) with index p = 1 and
cw1 = 1, is indeed bounded away from zero and we may choose ε̃ > 0.453. Since the
associated Bessel functions of the first kind are smooth, all assumptions are fulfilled
such that (24) can be positively applied in this ITP case. Certainly, one does normally
not know any properties of the underlying ITP eigenvector pair a priori, so the derived
ITE estimate might not be feasible in general.

Remark 5. In [5], facing the Laplacian Dirichlet eigenvalue problem, Betcke &
Trefethen relate the problem of finding MPS-based approximations with least boundary
norm to the concept of subspace angles between functions satisfying the interior
κ-dependent eigenvalue relation and those having zero boundary data, respectively.
Obviously, if the two subspaces have a non-trivial intersection for some k, it is spanned
by the corresponding Dirichlet eigenfunctions. It is possible to adopt this perspective
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also for the ITP case. A convenient definition of the subspace angle ϕ between the
function spaces A and D would be

cos(ϕ) := sup
a∈A,b∈D

(a, b)H
‖a‖H‖b‖H

,

where ‖·‖H is the induced norm from the inner product (16). We may define A = H(κ)
as the set of 2-tuples solving (2) and D as those functions pairs having identical
Neumann and Dirichlet boundary data. In coincidence with the Dirichlet case, simple
algebraic manipulations finally show that the sine of ϕ = ϕ(κ) then equals the minimal
boundary misfit of ‖ · ‖H-normed functions from H(κ) when measured in terms of the
boundary part of our underlying inner product. As a consequence, the right hand side
of (23) is then equivalently bounded in terms of the subspace angle between H(km) and
D.

5. Conclusions

We applied the method of fundamental solutions in two different versions for the
computation of interior transmission eigenvalues from homogeneous scatterers in 2D.
We showed that it is theoretically capable for detecting all real-valued ITEs if the
scattering boundary is sufficiently smooth and proved auxiliary error estimates which
are controlled by some generalized MFS output. Our second implementation, which
is based on the interior point extension with an additional QR decomposition from
[5] to overcome severe ill-conditioning effects, turns out to be the most convenient
and robust way for ITE approximations with fundamental solutions as starting point.
As such, our final algorithm is still easy-to-implement and manages to achieve high
accuracy mostly up to machine precision for scatterers which are relatively similar to
the disc. However, the approximation quality tends to degenerate within our numerical
experiments in correlation with the domain’s complexity when restricting to circles as
the only surrounding source point contours. The more general case is not yet covered
by our presented analysis and will be the focus of future research as well as a concrete
MFS-specific convergence analysis whose rates we also believe to depend on the source
locations and on continuation properties of the corresponding ITP eigenfunctions.
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