001     843619
005     20240708132902.0
037 _ _ |a FZJ-2018-01201
041 _ _ |a English
100 1 _ |a Sick, Kathrin
|0 P:(DE-Juel1)145775
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 42nd International Conference and Expo on Advanced Ceramics and Composites
|g ICACC 2018
|c Daytona Beach, Florida
|d 2018-01-21 - 2018-01-26
|w USA
245 _ _ |a Development of cathode contacting for SOFC stacks
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1537423971_5115
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a In SOFC stacks the electrical contact between the ceramic cathode layer and the metallic interconnector (IC) has to be adjusted carefully to minimize the contact resistance and slow down degradation mechanisms. In JÜLICH, ICs made of Crofer22APU are coated with a MnCo1.9Fe0.1O4 spinel (MCF), applied by atmospheric plasma spraying (APS), which successfully prevents the diffusion of volatile Cr species from the steel into the cell. Materials for the cathode contact layer have to be sufficiently good electronic conductors, stable in oxidizing atmosphere, chemically stable and compatible with the adjacent layers, and show a thermal expansion behavior similar to MCF and the cathode material, i. e. La0.58Sr0.4Co0.2Fe0.8O3-x (LSCF).To obtain an optimal contact layer, different aspects such as material properties, microstructure, and processing have to be considered. Here we compare various materials regarding their electrical conductivity and compatibility with each other and discuss different processing routes for the application of the cathode contact layer. DC conductivity measurements and scanning electron microscopy (SEM) imaging give information on the correlation of material properties and microstructure. We conclude that an LSCF contact layer with coarse porosity on top of the fine structured LSCF cathode is the most suitable contacting for JÜLICH SOFC stacks.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
700 1 _ |a Grigorev, Nikita
|0 P:(DE-Juel1)172675
|b 1
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 2
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 3
|u fzj
909 C O |o oai:juser.fz-juelich.de:843619
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145775
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21