000843657 001__ 843657
000843657 005__ 20220930130140.0
000843657 0247_ $$2doi$$a10.5194/gmd-11-575-2018
000843657 0247_ $$2ISSN$$a1991-959X
000843657 0247_ $$2ISSN$$a1991-9603
000843657 0247_ $$2Handle$$a2128/17393
000843657 0247_ $$2WOS$$aWOS:000424636400002
000843657 0247_ $$2altmetric$$aaltmetric:33346533
000843657 037__ $$aFZJ-2018-01226
000843657 041__ $$aEnglish
000843657 082__ $$a910
000843657 1001_ $$0P:(DE-Juel1)151377$$aRößler, Thomas$$b0$$eCorresponding author
000843657 245__ $$aTrajectory errors of different numerical integration schemes diagnosed with the MPTRAC advection module driven by ECMWF operational analyses
000843657 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2018
000843657 3367_ $$2DRIVER$$aarticle
000843657 3367_ $$2DataCite$$aOutput Types/Journal article
000843657 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1518522407_2219
000843657 3367_ $$2BibTeX$$aARTICLE
000843657 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843657 3367_ $$00$$2EndNote$$aJournal Article
000843657 520__ $$aThe accuracy of trajectory calculations performed by Lagrangian particle dispersion models (LPDMs) depends on various factors. The optimization of numerical integration schemes used to solve the trajectory equation helps to maximize the computational efficiency of large-scale LPDM simulations. We analyzed global truncation errors of six explicit integration schemes of the Runge–Kutta family, which we implemented in the Massive-Parallel Trajectory Calculations (MPTRAC) advection module. The simulations were driven by wind fields from operational analysis and forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) at T1279L137 spatial resolution and 3 h temporal sampling. We defined separate test cases for 15 distinct regions of the atmosphere, covering the polar regions, the midlatitudes, and the tropics in the free troposphere, in the upper troposphere and lower stratosphere (UT/LS) region, and in the middle stratosphere. In total, more than 5000 different transport simulations were performed, covering the months of January, April, July, and October for the years 2014 and 2015. We quantified the accuracy of the trajectories by calculating transport deviations with respect to reference simulations using a fourth-order Runge–Kutta integration scheme with a sufficiently fine time step. Transport deviations were assessed with respect to error limits based on turbulent diffusion. Independent of the numerical scheme, the global truncation errors vary significantly between the different regions. Horizontal transport deviations in the stratosphere are typically an order of magnitude smaller compared with the free troposphere. We found that the truncation errors of the six numerical schemes fall into three distinct groups, which mostly depend on the numerical order of the scheme. Schemes of the same order differ little in accuracy, but some methods need less computational time, which gives them an advantage in efficiency. The selection of the integration scheme and the appropriate time step should possibly take into account the typical altitude ranges as well as the total length of the simulations to achieve the most efficient simulations. However, trying to summarize, we recommend the third-order Runge–Kutta method with a time step of 170 s or the midpoint scheme with a time step of 100 s for efficient simulations of up to 10 days of simulation time for the specific ECMWF high-resolution data set considered in this study. Purely stratospheric simulations can use significantly larger time steps of 800 and 1100 s for the midpoint scheme and the third-order Runge–Kutta method, respectively.
000843657 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000843657 588__ $$aDataset connected to CrossRef
000843657 7001_ $$0P:(DE-Juel1)3709$$aStein, Olaf$$b1
000843657 7001_ $$0P:(DE-Juel1)165650$$aHeng, Yi$$b2
000843657 7001_ $$0P:(DE-Juel1)156619$$aBaumeister, Paul F.$$b3
000843657 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b4
000843657 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-11-575-2018$$gVol. 11, no. 2, p. 575 - 592$$n2$$p575 - 592$$tGeoscientific model development$$v11$$x1991-9603$$y2018
000843657 8564_ $$uhttps://juser.fz-juelich.de/record/843657/files/gmd-11-575-2018.pdf$$yOpenAccess
000843657 8564_ $$uhttps://juser.fz-juelich.de/record/843657/files/gmd-11-575-2018.gif?subformat=icon$$xicon$$yOpenAccess
000843657 8564_ $$uhttps://juser.fz-juelich.de/record/843657/files/gmd-11-575-2018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000843657 8564_ $$uhttps://juser.fz-juelich.de/record/843657/files/gmd-11-575-2018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000843657 8564_ $$uhttps://juser.fz-juelich.de/record/843657/files/gmd-11-575-2018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000843657 8564_ $$uhttps://juser.fz-juelich.de/record/843657/files/gmd-11-575-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000843657 8767_ $$8Helmholtz-PUC-2018-12$$92018-04-04$$d2018-04-04$$eAPC$$jZahlung erfolgt$$pgmd-2016-314
000843657 909CO $$ooai:juser.fz-juelich.de:843657$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000843657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151377$$aForschungszentrum Jülich$$b0$$kFZJ
000843657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3709$$aForschungszentrum Jülich$$b1$$kFZJ
000843657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156619$$aForschungszentrum Jülich$$b3$$kFZJ
000843657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b4$$kFZJ
000843657 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000843657 9141_ $$y2018
000843657 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000843657 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000843657 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000843657 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2015
000843657 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000843657 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000843657 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843657 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843657 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000843657 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000843657 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000843657 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000843657 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843657 920__ $$lyes
000843657 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000843657 9801_ $$aFullTexts
000843657 980__ $$ajournal
000843657 980__ $$aVDB
000843657 980__ $$aUNRESTRICTED
000843657 980__ $$aI:(DE-Juel1)JSC-20090406
000843657 980__ $$aAPC