001     843657
005     20220930130140.0
024 7 _ |a 10.5194/gmd-11-575-2018
|2 doi
024 7 _ |a 1991-959X
|2 ISSN
024 7 _ |a 1991-9603
|2 ISSN
024 7 _ |a 2128/17393
|2 Handle
024 7 _ |a WOS:000424636400002
|2 WOS
024 7 _ |a altmetric:33346533
|2 altmetric
037 _ _ |a FZJ-2018-01226
041 _ _ |a English
082 _ _ |a 910
100 1 _ |a Rößler, Thomas
|0 P:(DE-Juel1)151377
|b 0
|e Corresponding author
245 _ _ |a Trajectory errors of different numerical integration schemes diagnosed with the MPTRAC advection module driven by ECMWF operational analyses
260 _ _ |a Katlenburg-Lindau
|c 2018
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1518522407_2219
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The accuracy of trajectory calculations performed by Lagrangian particle dispersion models (LPDMs) depends on various factors. The optimization of numerical integration schemes used to solve the trajectory equation helps to maximize the computational efficiency of large-scale LPDM simulations. We analyzed global truncation errors of six explicit integration schemes of the Runge–Kutta family, which we implemented in the Massive-Parallel Trajectory Calculations (MPTRAC) advection module. The simulations were driven by wind fields from operational analysis and forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) at T1279L137 spatial resolution and 3 h temporal sampling. We defined separate test cases for 15 distinct regions of the atmosphere, covering the polar regions, the midlatitudes, and the tropics in the free troposphere, in the upper troposphere and lower stratosphere (UT/LS) region, and in the middle stratosphere. In total, more than 5000 different transport simulations were performed, covering the months of January, April, July, and October for the years 2014 and 2015. We quantified the accuracy of the trajectories by calculating transport deviations with respect to reference simulations using a fourth-order Runge–Kutta integration scheme with a sufficiently fine time step. Transport deviations were assessed with respect to error limits based on turbulent diffusion. Independent of the numerical scheme, the global truncation errors vary significantly between the different regions. Horizontal transport deviations in the stratosphere are typically an order of magnitude smaller compared with the free troposphere. We found that the truncation errors of the six numerical schemes fall into three distinct groups, which mostly depend on the numerical order of the scheme. Schemes of the same order differ little in accuracy, but some methods need less computational time, which gives them an advantage in efficiency. The selection of the integration scheme and the appropriate time step should possibly take into account the typical altitude ranges as well as the total length of the simulations to achieve the most efficient simulations. However, trying to summarize, we recommend the third-order Runge–Kutta method with a time step of 170 s or the midpoint scheme with a time step of 100 s for efficient simulations of up to 10 days of simulation time for the specific ECMWF high-resolution data set considered in this study. Purely stratospheric simulations can use significantly larger time steps of 800 and 1100 s for the midpoint scheme and the third-order Runge–Kutta method, respectively.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Stein, Olaf
|0 P:(DE-Juel1)3709
|b 1
700 1 _ |a Heng, Yi
|0 P:(DE-Juel1)165650
|b 2
700 1 _ |a Baumeister, Paul F.
|0 P:(DE-Juel1)156619
|b 3
700 1 _ |a Hoffmann, Lars
|0 P:(DE-Juel1)129125
|b 4
773 _ _ |a 10.5194/gmd-11-575-2018
|g Vol. 11, no. 2, p. 575 - 592
|0 PERI:(DE-600)2456725-5
|n 2
|p 575 - 592
|t Geoscientific model development
|v 11
|y 2018
|x 1991-9603
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/843657/files/gmd-11-575-2018.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/843657/files/gmd-11-575-2018.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/843657/files/gmd-11-575-2018.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/843657/files/gmd-11-575-2018.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/843657/files/gmd-11-575-2018.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/843657/files/gmd-11-575-2018.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:843657
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)151377
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)3709
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156619
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129125
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOSCI MODEL DEV : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21