000843673 001__ 843673 000843673 005__ 20220930130140.0 000843673 0247_ $$2doi$$a10.3389/fphys.2018.00046 000843673 0247_ $$2Handle$$a2128/18248 000843673 0247_ $$2pmid$$apmid:29449814 000843673 0247_ $$2WOS$$aWOS:000423823500001 000843673 0247_ $$2altmetric$$aaltmetric:32521309 000843673 037__ $$aFZJ-2018-01242 000843673 041__ $$aEnglish 000843673 082__ $$a610 000843673 1001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr$$b0$$eCorresponding author 000843673 245__ $$aMultisite Delayed Feedback for Electrical Brain Stimulation 000843673 260__ $$aLausanne$$bFrontiers Research Foundation$$c2018 000843673 3367_ $$2DRIVER$$aarticle 000843673 3367_ $$2DataCite$$aOutput Types/Journal article 000843673 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524551639_25914 000843673 3367_ $$2BibTeX$$aARTICLE 000843673 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000843673 3367_ $$00$$2EndNote$$aJournal Article 000843673 520__ $$aDemand-controlled deep brain stimulation (DBS) appears to be a promising approach for the treatment of Parkinson's disease (PD) as revealed by computational, pre-clinical and clinical studies. Stimulation delivery is adapted to brain activity, for example, to the amount of neuronal activity considered to be abnormal. Such a closed-loop stimulation setup might help to reduce the amount of stimulation current, thereby maintaining therapeutic efficacy. In the context of the development of stimulation techniques that aim to restore desynchronized neuronal activity on a long-term basis, specific closed-loop stimulation protocols were designed computationally. These feedback techniques, e.g., pulsatile linear delayed feedback (LDF) or pulsatile nonlinear delayed feedback (NDF), were computationally developed to counteract abnormal neuronal synchronization characteristic for PD and other neurological disorders. By design, these techniques are intrinsically demand-controlled methods, where the amplitude of the stimulation signal is reduced when the desired desynchronized regime is reached. We here introduce a novel demand-controlled stimulation method, pulsatile multisite linear delayed feedback (MLDF), by employing MLDF to modulate the pulse amplitude of high-frequency (HF) DBS, in this way aiming at a specific, MLDF-related desynchronizing impact, while maintaining safety requirements with the charge-balanced HF DBS. Previously, MLDF was computationally developed for the control of spatio-temporal synchronized patterns and cluster states in neuronal populations. Here, in a physiologically motivated model network comprising neurons from subthalamic nucleus (STN) and external globus pallidus (GPe), we compare pulsatile MLDF to pulsatile LDF for the case where the smooth feedback signals are used to modulate the amplitude of charge-balanced HF DBS and suggest a modification of pulsatile MLDF which enables a pronounced desynchronizing impact. Our results may contribute to further clinical development of closed-loop DBS techniques. 000843673 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0 000843673 588__ $$aDataset connected to CrossRef 000843673 7001_ $$0P:(DE-HGF)0$$aTass, Peter A.$$b1 000843673 773__ $$0PERI:(DE-600)2564217-0$$a10.3389/fphys.2018.00046$$gVol. 9, p. 46$$p46$$tFrontiers in physiology$$v9$$x1664-042X$$y2018 000843673 8564_ $$uhttps://juser.fz-juelich.de/record/843673/files/fphys-09-00046-1.pdf$$yOpenAccess 000843673 8564_ $$uhttps://juser.fz-juelich.de/record/843673/files/fphys-09-00046-1.gif?subformat=icon$$xicon$$yOpenAccess 000843673 8564_ $$uhttps://juser.fz-juelich.de/record/843673/files/fphys-09-00046-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000843673 8564_ $$uhttps://juser.fz-juelich.de/record/843673/files/fphys-09-00046-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000843673 8564_ $$uhttps://juser.fz-juelich.de/record/843673/files/fphys-09-00046-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000843673 8564_ $$uhttps://juser.fz-juelich.de/record/843673/files/fphys-09-00046-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000843673 8767_ $$82017-0101752-3$$92018-02-09$$d2018-02-09$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 1904.85 000843673 909CO $$ooai:juser.fz-juelich.de:843673$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery 000843673 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b0$$kFZJ 000843673 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0 000843673 9141_ $$y2018 000843673 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000843673 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000843673 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000843673 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHYSIOL : 2015 000843673 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000843673 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000843673 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000843673 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000843673 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000843673 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000843673 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000843673 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000843673 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000843673 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0 000843673 980__ $$ajournal 000843673 980__ $$aVDB 000843673 980__ $$aUNRESTRICTED 000843673 980__ $$aI:(DE-Juel1)INM-7-20090406 000843673 980__ $$aAPC 000843673 9801_ $$aAPC 000843673 9801_ $$aFullTexts