000843773 001__ 843773 000843773 005__ 20210129232645.0 000843773 0247_ $$2doi$$a10.3233/JAD-170705 000843773 0247_ $$2ISSN$$a1387-2877 000843773 0247_ $$2ISSN$$a1875-8908 000843773 0247_ $$2WOS$$aWOS:000416369700032 000843773 037__ $$aFZJ-2018-01316 000843773 082__ $$a610 000843773 1001_ $$0P:(DE-HGF)0$$aLange, Catharina$$b0$$eCorresponding author 000843773 245__ $$aPrediction of Alzheimer’s Dementia in Patients with Amnestic Mild Cognitive Impairment in Clinical Routine: Incremental Value of Biomarkers of Neurodegeneration and Brain Amyloidosis Added Stepwise to Cognitive Status 000843773 260__ $$aAmsterdam$$bIOS Press$$c2018 000843773 3367_ $$2DRIVER$$aarticle 000843773 3367_ $$2DataCite$$aOutput Types/Journal article 000843773 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1518791360_14935 000843773 3367_ $$2BibTeX$$aARTICLE 000843773 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000843773 3367_ $$00$$2EndNote$$aJournal Article 000843773 520__ $$aThe aim of this study was to evaluate the incremental benefit of biomarkers for prediction of Alzheimer’s disease dementia (ADD) in patients with mild cognitive impairment (MCI) when added stepwise in the order of their collection in clinical routine. The model started with cognitive status characterized by the ADAS-13 score. Hippocampus volume (HV), cerebrospinal fluid (CSF) phospho-tau (pTau), and the FDG t-sum score in an AD meta-region-of-interest were compared as neurodegeneration markers. CSF-Aβ1-42 was used as amyloidosis marker. The incremental prognostic benefit from these markers was assessed by stepwise Kaplan-Meier survival analysis in 402 ADNI MCI subjects. Predefined cutoffs were used to dichotomize patients as ‘negative’ or ‘positive’ for AD characteristic alteration with respect to each marker. Among the neurodegeneration markers, CSF-pTau provided the best incremental risk stratification when added to ADAS-13. FDG PET outperformed HV only in MCI subjects with relatively preserved cognition. Adding CSF-Aβ provided further risk stratification in pTau-positive subjects, independent of their cognitive status. Stepwise integration of biomarkers allows stepwise refinement of risk estimates for MCI-to-ADD progression. Incremental benefit strongly depends on the patient’s status according to the preceding diagnostic steps. The stepwise Kaplan-Meier curves might be useful to optimize diagnostic workflow in individual patients. 000843773 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0 000843773 588__ $$aDataset connected to CrossRef 000843773 7001_ $$0P:(DE-HGF)0$$aSuppa, Per$$b1 000843773 7001_ $$0P:(DE-Juel1)131667$$aPietrzyk, Uwe$$b2$$ufzj 000843773 7001_ $$0P:(DE-HGF)0$$aMakowski, Marcus R.$$b3 000843773 7001_ $$0P:(DE-HGF)0$$aSpies, Lothar$$b4 000843773 7001_ $$0P:(DE-HGF)0$$aPeters, Oliver$$b5 000843773 7001_ $$0P:(DE-HGF)0$$aBuchert, Ralph$$b6 000843773 773__ $$0PERI:(DE-600)2070772-1$$a10.3233/JAD-170705$$gVol. 61, no. 1, p. 373 - 388$$n1$$p373 - 388$$tJournal of Alzheimer's disease$$v61$$x1875-8908$$y2018 000843773 8564_ $$uhttps://juser.fz-juelich.de/record/843773/files/jad_2018_61-1_jad-61-1-jad170705_jad-61-jad170705.pdf$$yRestricted 000843773 8564_ $$uhttps://juser.fz-juelich.de/record/843773/files/jad_2018_61-1_jad-61-1-jad170705_jad-61-jad170705.gif?subformat=icon$$xicon$$yRestricted 000843773 8564_ $$uhttps://juser.fz-juelich.de/record/843773/files/jad_2018_61-1_jad-61-1-jad170705_jad-61-jad170705.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000843773 8564_ $$uhttps://juser.fz-juelich.de/record/843773/files/jad_2018_61-1_jad-61-1-jad170705_jad-61-jad170705.jpg?subformat=icon-180$$xicon-180$$yRestricted 000843773 8564_ $$uhttps://juser.fz-juelich.de/record/843773/files/jad_2018_61-1_jad-61-1-jad170705_jad-61-jad170705.jpg?subformat=icon-640$$xicon-640$$yRestricted 000843773 8564_ $$uhttps://juser.fz-juelich.de/record/843773/files/jad_2018_61-1_jad-61-1-jad170705_jad-61-jad170705.pdf?subformat=pdfa$$xpdfa$$yRestricted 000843773 909CO $$ooai:juser.fz-juelich.de:843773$$pVDB 000843773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131667$$aForschungszentrum Jülich$$b2$$kFZJ 000843773 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0 000843773 9141_ $$y2018 000843773 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ALZHEIMERS DIS : 2015 000843773 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000843773 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000843773 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000843773 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000843773 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000843773 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000843773 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000843773 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000843773 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000843773 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000843773 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000843773 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0 000843773 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1 000843773 980__ $$ajournal 000843773 980__ $$aVDB 000843773 980__ $$aI:(DE-Juel1)INM-4-20090406 000843773 980__ $$aI:(DE-82)080010_20140620 000843773 980__ $$aUNRESTRICTED