000843787 001__ 843787
000843787 005__ 20240711101426.0
000843787 0247_ $$2doi$$a10.1016/j.ijhydene.2018.07.126
000843787 0247_ $$2WOS$$aWOS:000444789300049
000843787 037__ $$aFZJ-2018-01330
000843787 082__ $$a660
000843787 1001_ $$0P:(DE-Juel1)143789$$aNguyen, Van Nhu$$b0$$eCorresponding author
000843787 245__ $$aStudy of Catalytic Combustion of Lean Hydrogen-Air Mixtures in a Monolith Reactor
000843787 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000843787 3367_ $$2DRIVER$$aarticle
000843787 3367_ $$2DataCite$$aOutput Types/Journal article
000843787 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547456256_17711
000843787 3367_ $$2BibTeX$$aARTICLE
000843787 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843787 3367_ $$00$$2EndNote$$aJournal Article
000843787 520__ $$aThis paper presents an experimental study of catalytic hydrogen combustion that used commercial catalysts containing Pt in a honeycomb monolith reactor in a plug flow configuration. The emphasis is on determining global kinetics in the case of low hydrogen content. Measurements of the temperature and composition of the reaction product at the outlet in the steady state condition at the different initial compositions of hydrogen and total volumetric feed rates were performed. The conversion of hydrogen was determined in parallel to the composition of the reaction product at the outlet using GC as well as by means of the thermodynamic approach using material and energy balances. The influence of the flow rate and initial molar fraction of hydrogen on hydrogen conversion is shown. A kinetic expression of the Arrhenius type is proposed with the reaction first order in hydrogen and zero order in oxygen for the overall process of the oxidation of hydrogen in lean hydrogen-air mixtures. The determined activation energy was in good agreement with the desorption activation energy for O2 from graphene-covered Pt(111) surfaces using temperature-programmed desorption. This result shows transport-limitations for heterogeneous hydrogen conversion in catalytic hydrogen combustion.
000843787 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000843787 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000843787 7001_ $$0P:(DE-Juel1)129838$$aDeja, Robert$$b1
000843787 7001_ $$0P:(DE-Juel1)129901$$aPeters, Roland$$b2
000843787 7001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b3
000843787 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4
000843787 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2018.07.126$$n36$$p17520-17530$$tInternational journal of hydrogen energy$$v43$$x0360-3199$$y2018
000843787 8564_ $$uhttps://juser.fz-juelich.de/record/843787/files/1-s2.0-S0360319918323504-main.pdf$$yRestricted
000843787 8564_ $$uhttps://juser.fz-juelich.de/record/843787/files/1-s2.0-S0360319918323504-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000843787 909CO $$ooai:juser.fz-juelich.de:843787$$pVDB
000843787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143789$$aForschungszentrum Jülich$$b0$$kFZJ
000843787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129838$$aForschungszentrum Jülich$$b1$$kFZJ
000843787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129901$$aForschungszentrum Jülich$$b2$$kFZJ
000843787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich$$b3$$kFZJ
000843787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000843787 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
000843787 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000843787 9141_ $$y2018
000843787 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000843787 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000843787 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000843787 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000843787 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000843787 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000843787 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843787 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000843787 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843787 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843787 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000843787 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000843787 920__ $$lyes
000843787 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000843787 980__ $$ajournal
000843787 980__ $$aVDB
000843787 980__ $$aI:(DE-Juel1)IEK-3-20101013
000843787 980__ $$aUNRESTRICTED
000843787 981__ $$aI:(DE-Juel1)ICE-2-20101013