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Abstract 

Background: Image-based plant phenotyping has become a powerful tool in unravelling genotype–environment 
interactions. The utilization of image analysis and machine learning have become paramount in extracting data stem-
ming from phenotyping experiments. Yet we rely on observer (a human expert) input to perform the phenotyping 
process. We assume such input to be a ‘gold-standard’ and use it to evaluate software and algorithms and to train 
learning-based algorithms. However, we should consider whether any variability among experienced and non-expe-
rienced (including plain citizens) observers exists. Here we design a study that measures such variability in an annota-
tion task of an integer-quantifiable phenotype: the leaf count.

Results: We compare several experienced and non-experienced observers in annotating leaf counts in images of 
Arabidopsis Thaliana to measure intra- and inter-observer variability in a controlled study using specially designed 
annotation tools but also citizens using a distributed citizen-powered web-based platform. In the controlled study 
observers counted leaves by looking at top-view images, which were taken with low and high resolution optics. We 
assessed whether the utilization of tools specifically designed for this task can help to reduce such variability. We 
found that the presence of tools helps to reduce intra-observer variability, and that although intra- and inter-observer 
variability is present it does not have any effect on longitudinal leaf count trend statistical assessments. We com-
pared the variability of citizen provided annotations (from the web-based platform) and found that plain citizens can 
provide statistically accurate leaf counts. We also compared a recent machine-learning based leaf counting algorithm 
and found that while close in performance it is still not within inter-observer variability.

Conclusions: While expertise of the observer plays a role, if sufficient statistical power is present, a collection of non-
experienced users and even citizens can be included in image-based phenotyping annotation tasks as long they are 
suitably designed. We hope with these findings that we can re-evaluate the expectations that we have from auto-
mated algorithms: as long as they perform within observer variability they can be considered a suitable alternative. In 
addition, we hope to invigorate an interest in introducing suitably designed tasks on citizen powered platforms not 
only to obtain useful information (for research) but to help engage the public in this societal important problem.
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Background

�is community is well aware of the importance of 

measuring a plant’s phenotype and its modulation due 

to environmental and genotypic variations. Scientists 

have been observing plants directly, measuring pheno-

typing traits manually for years. Whilst this method is 

labour-intensive and time consuming, it is also prone to 

errors [1, 2]. Recently, image-based phenotyping by cou-

pling imaging and automation has created a revolution 

on how we observe (and can potentially quantify) such 

phenotypic variation, in the hope of reducing the pheno-

typing bottleneck [3–5]. Without a doubt this potential 

has spurred a great interest in the imaging of plants at 

various levels of scale, above or below ground level, in the 

optical or hyper-spectral spectrum in 2D or 3D [6, 7].
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However, the ability to extract actionable information 

from image data, that will lead to the full realization of 

this revolution, is still considered a hard task  [8]. It is 

the complexity of some of the tasks involved that have 

now created a new bottleneck: lack of appropriate soft-

ware solutions able to effectively analyze such data  [9]. 

�e community has reacted swiftly by placing signifi-

cant emphasis in the design of new algorithms and the 

release of software (for example see the collection of 

http://www.plant-image-analysis.org and [10]). More 

recently, open datasets [11–13] have allowed not only 

the ability of experts within the community to evalu-

ate algorithmic performance on key phenotyping tasks, 

such as leaf segmentation and counting, but also enabled 

image computing experts new to plant phenotyping to 

enter this exciting field [14–18]. Unsurprisingly, many 

of the new methods rely on machine learning, a technol-

ogy that has the potential to transform how phenotyping 

discovery from images can occur in the future [19, 20], 

as also recently demonstrated [15, 16, 21]. Even though 

its potential is well-known, machine learning algorithms 

do require data to learn from, which typically need to be 

annotated by expert observers when domain-specificity 

is required. �e performance of algorithms is bounded to 

the precision of observers. Naturally this raises the ques-

tion how precise are the experts on a given task?

In the medical community, variability among observers 

is known to exist and has been accepted [22]. Also experts 

in plant breeding, diseases, and taxonomy agree that vari-

ability exists [23–25]. For example, several studies [26–28] 

have been used as de-facto references for discussing rater 

disagreement when visually scoring leaf diseases on the 

basis of scales. At the same time they have become moti-

vating references advocating that image analysis systems 

can help reduce (rater) variation [29]. �ey have been also 

perused in advocating for the use of digital imaging itself 

as opposed to on site surveys with rating scales [30]. Even 

the image-based phenotyping literature has been perus-

ing these works [30, 31]. However, an extensive literature 

review has not found a comparison of raters on visually 

quantifiable traits or phenotypes.

One such integer-quantifiable phenotype is counting 

the number of leaves (or fruits, flowers). Leaf count can 

be used to describe the growth status of a plant [32], and 

is obviously closely related to plastochron or phyllochron 

[33–35] and can be used to assess plants’ reactions to 

stress [34, 36]. Herewith lies a key difference: the count 

as a phenotype has a physical ‘ground truth’ which visual 

scales are not capturing and are not suited for. To this 

day, no such direct evaluation of observer agreement in 

leaf counting exists and to the best of our knowledge in 

the broader sense of image-based phenotyping of quanti-

fiable phenotypes.

Clearly, counting objects, here leaves, is a task gener-

ally doable even by non-experts without detailed expla-

nations. �is may not be true for other, maybe visually 

harder, phenotyping tasks. However, even though count-

ing plant organs might seem an elementary task, many 

factors may result in different values among observers, 

such as severe occlusions, small objects in the scene, 

low camera resolution, as well as mental fatigue of the 

annotators.

Estimating observer variability is crucial because it 

primarily allows us to put bounds on effect sizes and 

devise annotation strategies that minimize annotation 

effort (e.g. by splitting annotation effort among many 

observers). At the same time, by evaluating agreement 

comparing experienced (expert) and non-experienced 

(non-expert) observers we can evaluate the potential of 

using non-experts for simple well-defined annotation 

tasks. In addition, it allows us to put the performance 

of algorithms in comparison to intra- or inter-observer 

variation and assess how close we are to achieve human 

performance. It may even permit us to devise different 

algorithmic approaches that learn despite the presence of 

disagreement [37, 38].

Equally exciting is the potential to explore how the use 

of common citizens can be used to not only annotate 

data for machine learning but as being part of a pheno-

typing experimental pipeline. �e introduction of Ama-

zon Mechanical Turk (AMT, https://www.mturk.com/) 

that permits the use of humans (via fee) in solving com-

puter based microtasks in combination with annotation 

frameworks (e.g. LabelMe [39]) has led to an explosion of 

the potential use of crowdsourcing—a term was coined 

by Jeff Howe in 2006 [40]. It has been used for a variety 

of tasks already even for plant research e.g. http://photo-

nynq.org. However, there have been ongoing debates as 

to how one can control the quality of outcomes because 

in principle, crowdsourcing allows ‘anyone’ to contrib-

ute. More recently, citizen-powered platforms, where 

volunteers participate to help with a task, as opposed to 

receiving a reward (a payment in real [AMT] or virtual 

money [Gamification]), have received particular atten-

tion by many researchers. One such popular platform, 

Zooniverse (http://www.zooniverse.org), allows research-

ers to build projects to collect data from thousands of 

people around the world, in order to support corre-

sponding research. Several exciting projects have used 

the platform already: for example, Arteta et al. [41] used 

the data from a penguin watch project to automatically 

count penguins in the wild.

In this paper we aim to estimate observer agreement 

with a simple, yet expertly designed, image-based obser-

vational study. We select images of Arabidopsis �aliana 

(taken from a dataset in the public domain [11]) and ask 
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several observers to count leaves using a variety of setups 

in a controlled fashion. At the same time, we included the 

same images within a larger citizen-powered research 

project that runs on Zooniverse. Specifically, we aim to 

assess whether:

1. variations exist between the same observer (intra-

observer);

2. computer-aided counting, using a specifically 

designed annotation tool, helps to reduce variability 

compared to straight-forward visual observation;

3. observers differ from each other (inter-observer);

4. higher resolution reduced observer variability;

5. observer variability has any statistical influence in 

separating a cultivar of known different leaf growth 

w.r.t. wild-type;

6. time needed for annotations depends on expertise;

7. we can simulate the effects of randomly sampling 

from an observer population on statistical inference;

8. counts from a citizen-powered study can be used for 

phenotyping; and

9. a recent ML algorithm that predicts leaf count from 

plant images performs within the variation of observ-

ers.

We address these points one by one in this order in the 

“Results” section.

Methods

We recruited 10 annotators: 5 who have experience with 

image-based plant phenotyping (shorthanded below as 

ExP) and 5 who do not have experience with phenotyp-

ing but yet have experience with images (shorthanded 

hereafter as NExP) to annotate a subset of the Arabi-

dopsis dataset in [11]. Specifically, each annotator had a 

set of different tasks to accomplish using visual tools or 

simple observation designed to assess the influence of the 

factors considered in this study (see background above). 

Details of the approach taken are provided below.

Employed image data

�e data used in this study have been collected using an 

affordable imaging setup that used a Raspberry Pi cam-

era, but also an optical zoom camera that offered a higher 

effective resolution [21]. Images of two cultivars were 

selected (the wild-type col-0 and pgm), 5 replicates each 

every other day at 8am (i.e. every 48  h). pgm is known 

not to be able to accumulate transitory starch due to a 

mutation in the plastidic isoform of the phosphogluco-

mutase, which is required for starch synthesis and overall 

is known to be smaller than the wild-type [42]. Further-

more, pgm was recently shown to produce new leaves at 

a pace lower than wild-type [21]. �us, we knew a priori 

that these cultivars should show differences in a longitu-

dinal assessment of leaf count. �e sampling frequency 

chosen (every 48  h) results in 13 time points per each 

plant, providing 130 images overall for annotation. �is 

sampling frequency was chosen after statistical power 

analysis on the sample size of an ANOVA experiment 

[43] drawing effect sizes reported in [21].

Images were cropped such that a plant appears centered 

in the field of view. Plant images from the Raspberry Pi 

camera had an effective resolution of 300  ×  300 pixels 

(hereafter shorthanded as RPi), whereas the ones from the 

camera with movable optics had 470 × 470 pixels (short-

handed as Canon). In addition, to properly test intra-

observer variability eliminating as much as possible effects 

of visual memory, a copy of all images was created, where 

images were artificially transformed by random 90°, 180°, 

270° rotation or horizontal/vertical flip. �ese transformed 

datasets are shorthanded as RPi’ and Canon’. Data within 

each set were randomized to break temporal consistency 

and within genotype associations and to satisfy an identi-

cally independently distributed (IID) data source design.1 

Dataset names were obscured as A (RPi), B (Canon), C 

(RPi’), and D (Canon’) such that observers were blinded to 

what the sets meant and reduce possible bias in ratings.

Study design

A customized graphical user interface, based on the 

annotation tool in Phenotiki,2 was specifically designed 

for this study [21, 44]. �e tool prompted the user to 

select a dataset for annotation (from A, B, C, D) and the 

selected list of images was automatically loaded. For each 

image, the observer could place dot annotations marking 

every leaf they could identify. Critically dots remained 

visible throughout a plant annotation helping the annota-

tor keep track of visited leaves. When the observer was 

done, they could proceed to the next plant. Zoom and 

pan functionality were available to help observers visual-

ize scenarios such as small emerging leaves and occlu-

sions. Annotation timing was recorded but observers 

were not aware of this fact. Annotation timing (per plant) 

was calculated as the time elapsed from the first and last 

leaf annotation for a given plant. An example of the inter-

face seen by users is shown in Fig. 1A.

Experienced (with image-based plant phenotyping) and 

non-experienced observers were recruited to participate 

in this observational study. �ey were provided with a 

description of the purpose of the study, and were asked 

to consent to participate in the study. �ey were shown 

a guide and an introduction to the annotation tool to 

1 �is more closely emulates how experts rate data with visual scales in the 
field since there is an inherent assumption that previous ratings and images of 
the scene are not used as reference.
2 More information at http://phenotiki.com.
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ensure a common baseline. Specifically, we showed them 

examples of good plant annotations, where they were 

asked to mark leaves at the center of the leaf blade (or the 

most visible area in case of severe overlap). Each observer 

was assigned two or more of the datasets to rate and 

count leaves. �e order of the datasets shown was rand-

omized and never of the same orientation (e.g. if one was 

shown A the next dataset would be C or D) to minimize 

effects of memory. To further reduce memory effects a 

10 min break was enforced between annotation tasks.

Some observers were asked to rate the images also 

without the use of the tool but recorded leaf counts in a 

spreadsheet after shown an image.

Time to complete each set was recorded in addition to 

the times recorded by the tool itself (see annotation tim-

ing above).

Citizen-powered study

�e A data (RPi) were included as part of a larger citi-

zen-powered study (“Leaf Targeting”, available at https://

www.zooniverse.org/projects/venchen/leaf-targeting) 

built on Zooniverse (https://www.zooniverse.org/). Using 

the Zooniverse application programming interface (API), 

an annotation work-flow was designed that showed an 

image to a user via a web browser. �e users (random 

visitors) were asked to view a tutorial on how to annotate 

leaves. �e task essentially involved placing a dot anno-

tation on each leaf, thus retaining the characteristics of 

the interface used in the fully controlled study described 

previously. Users could as well zoom in and out and 

delete dot annotations. Users were also asked to answer 

a question after each plant was annotated as to their con-

fidence in having annotated all leaves (encoded as Yes: 3, 

Fig. 1 Annotation tool. Screenshots of the annotation tool and the web-page seen by users. A Screenshot of the customized, yet simplified, version 
of the leaf annotation tool in [21]. B An excerpt of the Zooniverse site used here showing annotations and the (single-choice) confidence question
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Not sure: 2, Missed leaves: 1). An example of an anno-

tated image along with the interface and questions seen 

by the users are shown in Fig. 1B. We note that the users 

have the option to log in to the platform and also to com-

ment about images where they can discuss issues related 

to the image or the task in general. We set the work-flow 

to repeat the same image 8 times after at least all images 

have been annotated 3 times; images for annotation are 

shown at random and thus annotations can be treated as 

IID and the same image is not rated by the same user. �e 

system exports complete information for each annotated 

image such as image ID, user name (or unique IP), time, 

the locations and number of dots, and the response to the 

confidence question.

Statistics and evaluation metrics

A variety of descriptive and summary statistics as well as 

several statistical methods were used to evaluate agree-

ment in the controlled experiment. We note that in the 

case of discrete counts and heavily zero inflated differences 

(when comparing counts between observers) many of the 

common statistics and visualization methods can lead to 

misinterpretations. �us, between a reference observer 

(XR) and one of the other observers (Xo), we adopted:

  •  Difference in count (DiC) mean and standard deviation 

of difference between XR and Xo. [Zero is best.]

  •  Absolute difference in count (|DiC|)  mean and stand-

ard deviation of absolute difference between XR and 

Xo. [Zero is best.]

  •  Mean squared error (MSE) squared difference between 

XR and Xo. [Zero is best.]

  •  Coefficient of determination (R2) the proportion of 

the variance in XR that is predictable from Xo. [One is 

best.]

  •  Krippendorff ’s alpha (alpha) a chance-adjusted index 

of inter-observer agreement [45]. We used the mAL-

PHAK implementation in Matlab [46] treating counts 

as a ratio scale variable comparing XR and Xo. [One is 

best.]

�e first four metrics were adopted since they have been 

used to compare counting algorithms on the basis of 

challenge data [14].

To visualize agreement between pairs of observers we 

used a modified version of the Bland–Altman (BA) plot 

[47] in conjunction with the histogram of count differ-

ences. For the BA plot, we plot color labelled squares 

with square color varying according to how many points 

agree on the same coordinates. �is is necessary since 

we observed that in scatter plots of discrete quantities, 

points will overlap misrepresenting the true distribution 

of the data.

Finally, while evaluating agreement is interesting on 

its own, we also considered an application-driven meas-

ure of agreement by estimating a mixed effect repeated 

measure two way ANOVA on count data as employed 

in [21] for the two cultivars. By this, essentially we test 

whether any observable differences exist in between 

cultivar longitudinal trends obtaining average counts 

using a different set of observers. We treated subject ID 

(i.e. the replicate) as a random effect whilst all other as 

fixed effects. To not over-inflate degrees of freedom we 

treated time as a continuous predictor. Of particular 

interest is the interaction term between time and cultivar 

(cultivar*time hereafter), since this is the term that tests 

longitudinal differences between the cultivars.

Results

Intra-observer variability

We assessed this via a second reading from the same 

observer using the tool. In  Fig.  2A we plot histograms 

and Bland–Altman (BA) plots for two observers on the 

datasets A, C (ie. same as A but with geometric changes). 

Considering also the corresponding rows in Table 1, we 

can see that intra-observer agreement overall is excellent, 

with the NExP observer showing slightly higher variation 

(higher standard deviation) and decreased agreement 

(alpha) compared to ExP.

Variability between tool and spreadsheet based counting

To assess whether the tool contributes to lower variabil-

ity in intra-observer measurements, in  Fig.  2B we show 

histograms and BA plots comparing counts obtained via 

the tool or spreadsheet measurements using the same, 

ExP or NExP, observer, shown respectively left and right. 

Note that deviation is higher when compared to the 

intra-observer findings using the tool alone (previous 

paragraph). It appears that the tool has less effect (smaller 

deviation) to an ExP, whereas it seems to help reduce 

variability for NExP. �is adheres to comments of NExP 

observers stating that when leaf numbers are high, and 

plant structure appears complex, it is hard to keep count-

ing the leaves manually without visual reference resulting 

in frequent restarts of counting (even 3 times). We note 

that the tool retains visible the placed dots to precisely 

help visual memory. �e same conclusions can be drawn 

from the statistical numbers shown in Table 1, however 

with slightly decreased agreement in the NExP observer.

All the results presented in the following refer to tool 

based annotations.

Inter-observer variability

To assess inter-observer variability we selected one expe-

rienced observer as a reference and compared against 

other ExP and NExP observers (a total of 9), which allows 
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us to be concise (e.g. by showing representative compari-

son pairs instead of all possible combinations). Although 

this approach does not take into account observation 

error of the reference observer, the chosen observer had 

the smallest intra-observer variation (see entry marked 

with a ‘[Reference  observer]a’ in Table 1.)

Figure 3A and B visualize inter-observer agreement in 

the case of RPi and Canon, whereas Table 1 offers statis-

tics. Overall we see that agreement is excellent independ-

ent of experience. At times experienced observers appear 

to disagree more particularly when resolution is higher. 

�is is likely attributed to how experienced observers 

appreciate new leaf emergence and particularly if they 

are trained to see it or not.

Influence of resolution on intra-observer variability

�is variation among experienced observers becomes 

also evident when comparing the same observer and their 

annotations when resolution alters. �e ExP observer 

(who is also the reference) tends to underestimate when 
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Fig. 2 Intra-observer variability. A Intra-observer variability of experienced (left: A1) or non-experienced (right: A2) observers in RPi. B Influence of 
the tool in intra-observer measurements in experienced (left: B1) or non-experienced (right: B2) observers in RPi

Table 1 Measurement of agreement between experienced and non-experienced observers

For shorthand definitions see text. For DiC and |DiC| average and standard deviation are reported. Note that these correspond also to bias and limits of agreement 
(when standard deviation is multiplied by 1.96) of the Bland–Altman plots reported. ↓ means lower is better, whereas ↑ the opposite
a This experienced observer is noted and used as the reference observer for the remaining analysis throughout the paper

DiC ↓ |DiC| ↓ MSE ↓ R2↑ Alpha ↑

Intra-observer (RPi) tool

Experienced [The reference  observer]a 0.10 (0.54) 0.29 (0.47) 0.307 0.980 0.987

Non-experienced 0.13 (0.77) 0.42 (0.65) 0.600 0.960 0.981

Tool versus visual (RPi)

Experienced 0.00 (0.64) 0.33 (0.55) 0.415 0.970 0.986

Non-experienced 0.23 (0.82) 0.46 (0.71) 0.730 0.950 0.977

Inter-observer (RPi) tool

Experienced 0.07 (0.65) 0.37 (0.53) 0.423 0.974 0.980

Non-experienced 0.49 (0.76) 0.60 (0.67) 0.815 0.962 0.962

Inter-observer (Canon) tool

Experienced 0.55 (0.74) 0.63 (0.68) 0.861 0.969 0.959

Non-experienced 0.23 (0.63) 0.37 (0.56) 0.450 0.977 0.976

Intra-observer across resolution (RPi and Canon) tool

Experienced 0.57 (0.87) 0.68 (0.79) 1.100 0.950 0.965

Non-experienced 0.40 (0.70) 0.51 (0.62) 0.650 0.973 0.977

Citizens inter-observer (RPi) zooniverse

Experienced versus consensus (average) 0.53 (0.77) 0.62 (0.69) 0.869 0.962 0.960

Experienced versus consensus (max) 0.08 (0.82) 0.45 (0.69) 0.684 0.957 0.971

Consensus (average) versus sing. random 0.00 (0.78) 0.42 (0.65) 0.607 0.960 0.970
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resolution is lower. Whereas the NExP observer shows 

less under-estimation and higher agreement. It appears 

that NExP observers may miss young leaves independ-

ent of resolution (as they are not trained to see them) 

whereas the ExP observer misses them only on lower 

resolution.

Influence of observer variation in longitudinal analysis

In Fig. 4 we show per-day average leaf count for each cul-

tivar (i.e. averaging across replicates) when using annota-

tions from different sets (and numbers) of observers for 

the RPi data. �e top row refers to using a single ExP or 

NExP observer i.e. averaging within the population of 

each cultivar (panel A); whereas the middle row refers 

to a group of observers within their expertise, averaging 

first across observer annotations, and then across repli-

cates (panel B). Panel C is similar to B but averages across 

all observers. �e plots show average leaf count (within 

the population of each cultivar) and 1 standard deviation 

(shading) from the mean of the population. It is evident 

that given the effect size of the chosen cultivars, trends 

of average leaf count are expected even when using a sin-

gle observer, albeit the ExP observer shows less variation. 

When combining observations across a group of observ-

ers trends still show even clearer and one may even argue 

that averaging across NExP tends to perform even better 

than a single NExP observer (compare panel B and A).

In Table 2 the results of the statistical ANOVA experi-

ment are shown focusing only on the interaction term of 

interest (time*cultivar). We can see that in all cases the 

interaction is significant (p ≤ 0.05) confirming the visual 

findings of Fig. 4 and analyzed above. Note that although 

the smoothing effect is evident in the plots, when using 

more observers slightly increases the p value (decrease 

of the F score). �is could be attributed to the fact that 

when using a single observer their behaviour (e.g. ten-

dency to under-estimate) may be considered a fixed 

effect which is captured in the intercept, whereas using a 

population of observers (even of the same expertise) this 

may not be captured by the specification of the ANOVA 

model.

Time results

Overall, we find that on average observers using the tool 

spent 48 min to annotate 130 plants for an average of 21 s 

per plant. Observers using the spreadsheet took on aver-

age 42  min. �ese findings were obtained by recording 

start and stop times of 5 observers in a controlled set-

ting and provide aggregate timing information across an 

annotation task.

On the other hand, by keeping track of time when 

annotations were placed using the tool, more precise per 

leaf timing annotations were obtained (see “Methods”). 

Since this approach assumes that observers continu-

ously label leaves, which may not hold if they take a break 
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ers in RPI; B same as in A but in Canon data; C Variability of experienced (left: C1) or non-experienced (right: C2) observers when comparing counts 
of the same observer in RPi and Canon data



Page 8 of 14Giuffrida et al. Plant Methods  (2018) 14:12 

whilst labeling a plant, times greater than 200 s were con-

sidered outliers and were excluded from analysis.

Recording the time required to annotate a plant, we 

found that there is no statistical difference between expe-

rienced and non-experienced observers (p value 0.245). 

On average, within the 21 s required to annotate a plant, 

only 8.5s were used to actually complete the task. (In gen-

eral, an annotator takes 1.10 ± 2.15 s per-leaf ). We argue 

that annotators use the remaining time to assess how to 

annotate a plant and evaluate the quality of their own 
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work. In fact, several annotators were double-checking 

their work after they finished to annotate all the leaves. 

We found this by analysing the timestamps recorded for 

each annotation. For some plants, the last annotation was 

placed after 40 min from the first one on the same image. 

Moreover, we also found no correlation between errors 

and time. Specifically, comparing the leaf count with the 

reference expert, the DiC is not affected over time.

Simulating a citizen-powered study

Given the number of available observers on RPi (9 

observers) and the a priori knowledge of their experi-

ence, it is of interest to explore: (i) the effects of using 

multiple observers for phenotyping by reducing their 

load (i.e. not having to annotate all images but a fraction 

of them) and consequently; (ii) the potential of using citi-

zen-powered research platforms for phenotyping (where 

experience could be an unknown factor).

At first instance we wanted to simulate how many 

annotations we need to still maintain the phenotyp-

ing findings of the previous section: i.e. that there is 

an effect between time and genotype in the ANOVA 

setup. For this purpose we set-up a Monte Carlo simula-

tion study that at each trial randomly draws a sampling 

matrix with K observations per time point. For exam-

ple, for two observations per time point, this matrix 

has K = 2 ones per row (a row is an observation) for a 

total of 260 ones (the rest being zeros). �e placement 

of ones select from which annotator an observation is 

obtained for this time point. For more than 1 annota-

tion per time point (i.e. plant image), annotations across 

observers are averaged.

We varied K = 1, 2, 3 drawing from all available anno-

tators (n = 9) or only from experienced (n = 5) or non-

experienced observers (n = 4) to inspect the influence of 

mixing experience in annotations in the overall result. At 

each trial we run the ANOVA experiment and record the 

p value of the interaction term (time*cultivar). We draw 

500 trials for each variation of setup (K and the observer 

groups) and finally obtain summary statistics of the dis-

tribution of the p values among the 500 trials, namely 

minimum, maximum, mean, standard deviation, and 

kurtosis (a notion of symmetry and normality).

Table 3 reports the findings of this study. Overall we see 

that at no point, independently of the number of anno-

tations used or the experience of observers, the p value 

is not statistically significant (the max p value is always 

below the significance threshold). �is is telling since 

even 1 annotation is enough for the effect size observed 

in these cultivars. With 1 annotation per time point, with 

9 observers this would have an effect of reducing anno-

tation effort per-observer to 11.1% of the dataset (i.e. 

14–15 plants per each observer). As expected the more 

observers the better; but sampling only from experienced 

observers did not necessarily outperform sampling only 

from non-experienced ones. Given the leptokurtic char-

acteristic of these distributions (high kurtosis), the distri-

butions are highly peaked around the mean with values 

concentrating around these. Overall, while the max 

Table 2 F and p values for the ANOVA tests corresponding 

to the plots in Fig. 4

Only time*cultivar interaction is shown corresponding to the factor of interest 
(longitudinal trend). Results with ‘All’ and consensus citizen average (or max) 
across per-plant observations

Sum sq. F p value

A single ExP 47.816 43.775 0.000167

A single NExP 47.170 30.017 0.000588

All ExP 56.264 34.661 0.000367

All NExP 49.533 29.116 0.000649

All observers 53.219 32.280 0.000464

Consensus citizen (average) 66.923 19.044 0.0024

Consensus citizen (max) 76.855 23.713 0.0012

Table 3 A simulated citizen-powered experiment. p values corresponding to an ANOVA test randomizing the number 

of observations available per each plant at a specific time point

Process is repeated sampling from any of the observers (i.e. the sampling may contain a mix of experienced and non-experienced observers) or only from experienced 
(ExP) or non-experienced (i.e. NExP) ones

K Min Max Mean Std Kurtosis

Any 1 0.00003 0.00819 0.00124 0.00113 10.34

Any 2 0.00002 0.00729 0.00120 0.00112 8.98

Any 3 0.00010 0.00235 0.00061 0.00032 6.49

ExP only 1 0.00000 0.00726 0.00102 0.00103 9.58

ExP only 2 0.00004 0.00306 0.00057 0.00040 9.29

ExP only 3 0.00008 0.00150 0.00047 0.00021 5.35

NExP only 1 0.00008 0.00378 0.00100 0.00065 5.71

NExP only 2 0.00023 0.00174 0.00078 0.00028 3.49

NExP only 3 0.00033 0.00124 0.00069 0.00015 3.19
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indicates the worst expected result, results around the 

mean are to be expected as more typical.

Results from the citizen-powered study

�e study was launched on May 1st 2017, and by June 

1st, approximately 5000 user annotations were available 

on a dataset of 1248 images, including the 130 RPi images 

used in this paper, with each image having at least 3 user 

annotations. Data were extracted from the Zooniverse 

database and a similar statistical analysis as to the one 

outlined above was carried out.

Of the 5000 annotations 4 Zooniverse users were 

responsible for annotating close to 10% of the data, as we 

can see in Fig. 5A. Most users contribute few annotations 

(long tail to the right), and not surprisingly most of the 

users are logged in (shown as black stem line without a 

marker in Fig. 5A), which implies that they are frequent 

contributors to the platform.

Of particular interest is to explore if the self-reported 

confidence (answering the question on whether they 

believe they have annotated all leaves) relates to the 

spread of leaf counts among users for each plant. Fig-

ure  5B shows a two dimensional histogram of the per-

plant standard deviation of the reported leaf count 

among the users with none referring to 0 standard devia-

tion (i.e. annotations agree fully) and the average confi-

dence (averaging the confidence question) for each plant 

of the 130 used in this study. An average of 3 shows high 

confidence (y-axis) versus an average of 1 low confidence 

(y-axis). Color encodes probability of occurrence. Users 

tend to agree with each other and their self reporting of 

confidence appears to be consistent with their spread in 

counting leaves, since the upper left quadrant sums to 

approximately 70% of occurrences.

We then estimated a consensus citizen by averaging 

counts across the annotated counts for each plant. We 

compared this consensus against the reference observer 

(from our controlled study) and a random single selection 

of counts, which can be seen as selecting one count per 

plant out of the 3 citizen provided counts (shorthanded 

as sing. random in Table 1). �e results of this analysis are 

shown in Fig. 5C and D respectively. We see what there is 

some variability among the reference observer and con-

sensus citizen (Fig.  5C), with the latter underestimating 

counts (see also related entries of DiC in Table 1). On the 

other hand variability appears to be smaller within citi-

zens (c.f. Fig. 5D and entries in Table 1).

Admittedly of most interest is to see if plain citizens 

can be used for actual phenotyping. We use the counts 

of the consensus citizen and plot as previously aver-

age (and one standard deviation) per cultivar counts as 

a function of time in  Fig.  4D. We can see that this plot 

closely resembles the others and particularly the one of 

using only non-experienced observers in our controlled 

study. Equally the corresponding ANOVA experiment 

(last row in Table  2) shows exactly the same findings 

since using the consensus citizen counts yields a p value 

still statistically significant, albeit larger compared to the 

one of the controlled experiment. However, a key differ-

ence between the two exists: in our controlled study all 
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observers rated all images, so perhaps fixed effects of 

each observer may be captured in the intercept. Instead 

in the citizen experiment all counts come from a large 

pool of observers. In fact, when we compare the p value 

of the consensus citizen (p = 0.0014) it is within the min-

max bounds we find in our simulated study reported in 

Table 3.

Post-hoc, i.e. knowing that citizens under-estimate, 

under-estimation reaches 0 if we use the maximum 

across annotated counts (instead of average), and sev-

eral other metrics improve including the p value of the 

ANOVA. In Tables  1 and 2 this is shown as consensus 

(max).

Variability between algorithmic leaf count and experts

In addition to manual counting, we also tested a well-

known leaf counting algorithm [15, 21] to assess whether 

algorithm error is within (or outside) human variation.

For this experiment, we used the plant images in [21], 

with annotations performed by experts not involved in 

other aspects of this study. Overall, this dataset contains 

1248 individual images of plants, taken from five differ-

ent cultivars (col-0, pgm, ein2.1, ctr, and adh1). Specifi-

cally, images of ctr, adh1, and ein2.1 cultivars were used 

as training set (728 images in total), whereas the images 

of pgm and col-0 cultivars, which were also used in this 

study, were employed as testing set (130 images in total). 

From the training images, we learned a plant descriptor 

that derives image features and the projected leaf area 

to learn a non-linear model to predict the leaf count. 

It is noteworthy that the training set contains cultivars 

not included in the testing set, which makes this learn-

ing protocol the most stringent condition as the algo-

rithm has never seen the mutants. After the model was 

trained, we calculated the evaluation metrics in [21] in 

the training (728 images) and testing sets (130 images). 

In addition, since the expert observer that labeled the 

images used to train the algorithm was not part of this 

study, we also computed the disagreement between this 

expert and the reference observer used throughout this 

study.

As shown in Table 4, the algorithm learns well (agree-

ment between algorithm and annotator on the 728 

training images the algorithm was trained on). When 

predicting counts on the 130 test images, the algorithm 

performs slightly worse when compared with the same 

annotator involved in labeling the training set (mid-

dle column). However, we can see that the algorithm is 

within inter-observer variability which compares two 

expert annotators (last column in Table  4). While on 

average the algorithm predicts the correct leaf count 

on some images (mean close to zero) it appears that 

it is over- or under-estimating counts on some, which 

explains the high standard deviation and high MSE. We 

note that here the algorithm carries two sources of varia-

tion (error): one of the annotator and one of the learning 

process itself. �e latter can be minimized, but the for-

mer unfortunately is harder to do so unless a mixture of 

annotators is used.

Discussion and conclusion

In the following, we discuss the findings of our study, 

where we investigated observer variability for an annota-

tion task being deliberately chosen to be simple to under-

stand and perform for human annotators. Clearly, not 

all of these findings generalize to all (possible) human 

annotation tasks. Findings on ‘negative effects’, i.e. factors 

increasing annotator variability, like fatigue, lack of suit-

able annotation tools etc. can be expected to be also pre-

sent for harder annotation tasks being more challenging 

for humans. �ey are expected to generalize well. How-

ever, ‘positive effects’, e.g. observed discriminative power 

of human annotations for the investigated task, cannot 

as easily be generalized to other, especially more difficult 

tasks.

In this study, we showed that intra-observer variability 

remains low with experienced observers, but non-expe-

rienced ones tend to vary more in their second repeat 

Table 4 Algorithmic leaf counting results obtained using the method in [15]

Four metrics are reported. We first compare between the algorithm and the 728 images in the training set (ie. how well the algorithm learns). Then we compare how 
well the algorithm predicts counts on a testing set of 130 images (also used in this study) comparing the algorithm with the counts of the annotator (that also was 
involved in deriving annotations for the training set). Lastly we compare the annotator (the data of which we used to train the algorithm and was not involved in this 
study) with the reference observer used throughout in this study

Algorithm versus annotator Algorithm versus annotator Annotator versus reference

Training error Testing error Inter-observer error

DiC ↓ 0.00 (1.07) −  0.04 (1.31) 0.21 (0.75)

|DiC| ↓ 0.61 (0.88) 0.88 (0.96) 0.46 (0.62)

MSE ↓ 1.163 1.700 0.600

R2↑ 0.933 0.895 0.964
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reading using a visualization tool. Our annotation tool 

helps to retain mental memory and to reduce fatigue 

overall lessening the potential for errors when plants 

become larger and have more leaves. At the same time 

we showed that higher image resolution helps, but not 

always with the same effect: higher resolution aids the 

experienced user to find more of the smaller leaves, but 

non-experienced ones missed them more often indepen-

dently of resolution. Inter-observer variability is not sig-

nificantly greater than intra-observer variability. Overall 

observers tend to be within plus/minus one leaf almost 

80% of the time.

�is agreement seems appealing but it might be ran-

dom in nature and we explored if it affects the use of 

observers in actually identifying group differences in 

longitudinal counts. Repeat statistical tests showed that, 

when we use one or more experienced or non-experi-

enced observers, we still come to the same statistical con-

clusion using an ANOVA test on the same longitudinal 

cultivar comparison: we find, as expected, differences in 

trends between col-0 and pgm as reported previously on 

the same data [21]. Whether we use only experienced or 

non-experienced observers has minimal effects on the 

statistical inference of the test.

Encouraging are the investigations using simulated 

and real data from citizen-powered experiments. In real 

experiments we cannot ensure the composition (in exper-

tise) of the participating users and neither we can assume 

that the same user will annotate all the data. However, 

our analysis on simulated data (where we can control 

the composition) showed that having even 1 annotation 

per plant can be sufficient to arrive to the same statistical 

conclusion (differences in cultivar trends) but of course 

having more is better, reducing variation. �ese find-

ings held also in the real citizen-powered experiment 

based on the Zooniverse platform. Leaf counting based 

on algorithms while showing promise and progress does 

not yet meet human performance necessitating further 

investigation in the area; thankfully, collation studies 

[14] and challenges (e.g. the counting challenge of the 

CVPPP workshop series https://www.plant-phenotyping.

org/CVPPP2017-challenge) on open data [11] will help 

advance the state-of-the-art.

�is paper points to several potential areas for further 

research. Variability will be present in annotations and 

we can either obtain a better consensus, learn to ignore 

this variability, or alter the annotation task to minimize 

variability. In this study consensus was obtained through 

averaging across annotations and treating time points 

independently, but alternative mechanisms can be used 

to establish more consistent longitudinal counts. For 

example, one can adopt several other consensus 

approaches that are data-agnostic [48] or if we assume 

that leaves always emerge or remain the same in succes-

sion of images but cannot disappear, consensus can be 

derived using a dynamic filtering approach. Alternatively, 

machine learning algorithms can be used to learn directly 

from such repeated and imprecise (in machine learning 

speak: noisy) annotations potentially also obtaining con-

sensus estimates which should also help eliminate 

observer bias. However, in machine learning much effort 

has been devoted to noisy annotations in classification 

tasks [37, 38] but in regression is a yet unexplored area. A 

more radical approach, is to alter the design of the anno-

tation task completely: for example, users can be shown 

pairs of images and can be asked to identify only ‘new’ 

leaves (if any at all). Irrespective of the design of the 

annotation task, minimizing the amount of data requir-

ing annotation by selectively displaying (to the observers/

annotators) only images that do need annotation is 

always desirable. �is has strong links to active (machine) 

learning [49] which displays images that are the most 

informative from a machine learning perspective. Inte-

grating this may be possible within a controlled lab anno-

tation platform (as for example with the CellProfiler [49] 

software3) but doing so in Zooniverse is not straightfor-

ward as images used in the work-flow cannot be altered 

on the fly and a customized platform would be required.

Considering all these findings we can conclusively 

argue that while there is some variability among observ-

ers it is minimal when evaluating quantitative traits like 

counting objects, even of very different sizes. For the 

group (cultivar) effect sizes observed here this variability 

had no effect in statistical inference. At the same time 

common citizens, empowered by easy to use platforms, 

can greatly assist the effort of annotating images; at least, 

when the overall task is broken down in elementary sub-

tasks generally doable even by non-experts without 

detailed explanations. �en common citizens can be used 

to provide annotations and drive phenotypic analysis. 

Such annotations help to develop and evaluate auto-

mated algorithms and allow to train machine learning-

based solutions. Using such platforms a higher 

annotation throughput can be met than perhaps available 

locally in a lab, reducing significantly annotation effort.4 

It is time to consider how we can motivate the participa-

tion of citizens and design annotation tasks that can pro-

vide data of sufficient quality for other phenotyping tasks. 

3 �is is planned to be made available in Phenotiki in mid 2018 for the 
counting module.

4 We emphasize that Zooniverse is not an annotation platform per se and 
any workflow presented should have a strong ethical and reward mecha-
nism to be accepted as a Zooniverse project. For tasks with a demand-
ing rate and purely annotation objective gamification and crowdsourcing 
should be selected.
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�is will have not only an effect on phenotyping but also 

on introducing this societally important problem to the 

broad public.
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