000843822 001__ 843822
000843822 005__ 20240619083544.0
000843822 0247_ $$2doi$$a10.1063/1.5011196
000843822 0247_ $$2ISSN$$a0021-9606
000843822 0247_ $$2ISSN$$a1089-7690
000843822 0247_ $$2Handle$$a2128/17698
000843822 0247_ $$2WOS$$aWOS:000427030500017
000843822 037__ $$aFZJ-2018-01361
000843822 041__ $$aEnglish
000843822 082__ $$a540
000843822 1001_ $$0P:(DE-Juel1)130829$$aMeier, G.$$b0$$eCorresponding author
000843822 245__ $$aNano-viscosity of supercooled liquid measured by fluorescence correlation spectroscopy: pressure and temperature dependence and the density scaling
000843822 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2018
000843822 3367_ $$2DRIVER$$aarticle
000843822 3367_ $$2DataCite$$aOutput Types/Journal article
000843822 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521197551_6665
000843822 3367_ $$2BibTeX$$aARTICLE
000843822 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843822 3367_ $$00$$2EndNote$$aJournal Article
000843822 520__ $$aThe Stokes-Einstein relation allows us to calculate apparent viscosity experienced by tracers in complex media on the basis of measured self-diffusion coefficients. Such defined nano-viscosity values can be obtained through single particle techniques, like fluorescence correlation spectroscopy (FCS) and particle tracking (PT). In order to perform such measurements, as functions of pressure and temperature, a new sample cell was designed and is described in this work. We show that this cell in combination with a long working distance objective of the confocal microscope can be used for successful FCS, PT, and confocal imaging experiments in broad pressure (0.1-100 MPa) and temperature ranges. The temperature and pressure dependent nano-viscosity of a van der Waals liquid obtained from the translational diffusion coefficient measured in this cell by means of FCS obeys the same scaling as the rotational relaxation and macro-viscosity of the system.
000843822 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000843822 588__ $$aDataset connected to CrossRef
000843822 7001_ $$0P:(DE-HGF)0$$aGapinski, J.$$b1
000843822 7001_ $$0P:(DE-HGF)0$$aRatajcczyk, M.$$b2
000843822 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M. P.$$b3
000843822 7001_ $$0P:(DE-Juel1)130714$$aHirtz, Kurt$$b4
000843822 7001_ $$0P:(DE-HGF)0$$aBanachowicz, E.$$b5
000843822 7001_ $$0P:(DE-HGF)0$$aPatkowski, A.$$b6
000843822 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.5011196$$gVol. 148, no. 9, p. 094201 -$$p094201$$tThe journal of chemical physics$$v148$$x0021-9606$$y2018
000843822 8564_ $$uhttps://juser.fz-juelich.de/record/843822/files/Meier_FCS_HP_re-Revised.pdf$$yOpenAccess
000843822 8564_ $$uhttps://juser.fz-juelich.de/record/843822/files/Meier_FCS_HP_re-Revised.gif?subformat=icon$$xicon$$yOpenAccess
000843822 8564_ $$uhttps://juser.fz-juelich.de/record/843822/files/Meier_FCS_HP_re-Revised.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000843822 8564_ $$uhttps://juser.fz-juelich.de/record/843822/files/Meier_FCS_HP_re-Revised.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000843822 8564_ $$uhttps://juser.fz-juelich.de/record/843822/files/Meier_FCS_HP_re-Revised.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000843822 8564_ $$uhttps://juser.fz-juelich.de/record/843822/files/Meier_FCS_HP_re-Revised.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000843822 909CO $$ooai:juser.fz-juelich.de:843822$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000843822 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130829$$aForschungszentrum Jülich$$b0$$kFZJ
000843822 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b3$$kFZJ
000843822 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000843822 9141_ $$y2018
000843822 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000843822 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000843822 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2015
000843822 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843822 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000843822 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843822 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000843822 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000843822 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000843822 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000843822 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000843822 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000843822 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000843822 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843822 920__ $$lyes
000843822 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000843822 9801_ $$aFullTexts
000843822 980__ $$ajournal
000843822 980__ $$aVDB
000843822 980__ $$aUNRESTRICTED
000843822 980__ $$aI:(DE-Juel1)ICS-3-20110106