000843827 001__ 843827
000843827 005__ 20240610121147.0
000843827 0247_ $$2doi$$a10.1098/rsif.2017.0713
000843827 0247_ $$2ISSN$$a1742-5662
000843827 0247_ $$2ISSN$$a1742-5689
000843827 0247_ $$2WOS$$aWOS:000426464000003
000843827 0247_ $$2altmetric$$aaltmetric:33372922
000843827 0247_ $$2pmid$$apmid:29445038
000843827 0247_ $$2Handle$$a2128/22832
000843827 037__ $$aFZJ-2018-01366
000843827 082__ $$a500
000843827 1001_ $$0P:(DE-Juel1)162200$$aHornung, Raphael$$b0
000843827 245__ $$aQuantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation
000843827 260__ $$aLondon$$bThe Royal Society$$c2018
000843827 3367_ $$2DRIVER$$aarticle
000843827 3367_ $$2DataCite$$aOutput Types/Journal article
000843827 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1545057939_24441
000843827 3367_ $$2BibTeX$$aARTICLE
000843827 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843827 3367_ $$00$$2EndNote$$aJournal Article
000843827 520__ $$aNutrient gradients and limitations play a pivotal role in the life of all microbes, both in their natural habitat as well as in artificial, microfluidic systems. Spatial concentration gradients of nutrients in densely packed cell configurations may locally affect the bacterial growth leading to heterogeneous micropopulations. A detailed understanding and quantitative modelling of cellular behaviour under nutrient limitations is thus highly desirable. We use microfluidic cultivations to investigate growth and microbial behaviour of the model organism Corynebacterium glutamicum under well-controlled conditions. With a reaction–diffusion-type model, parameters are extracted from steady-state experiments with a one-dimensional nutrient gradient. Subsequently, we employ particle-based simulations with these parameters to predict the dynamical growth of a colony in two dimensions. Comparing the results of those simulations with microfluidic experiments yields excellent agreement. Our modelling approach lays the foundation for a better understanding of dynamic microbial growth processes, both in nature and in applied biotechnology.
000843827 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000843827 588__ $$aDataset connected to CrossRef
000843827 7001_ $$0P:(DE-Juel1)143612$$aGrünberger, Alexander$$b1
000843827 7001_ $$0P:(DE-Juel1)168453$$aWesterwalbesloh, Christoph$$b2
000843827 7001_ $$0P:(DE-Juel1)140195$$aKohlheyer, Dietrich$$b3
000843827 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b4
000843827 7001_ $$0P:(DE-Juel1)130629$$aElgeti, Jens$$b5$$eCorresponding author
000843827 773__ $$0PERI:(DE-600)2156283-0$$a10.1098/rsif.2017.0713$$gVol. 15, no. 139, p. 20170713 -$$n139$$p20170713 -$$tInterface$$v15$$x1742-5662$$y2018
000843827 8564_ $$uhttps://juser.fz-juelich.de/record/843827/files/1802.05858.pdf$$yOpenAccess
000843827 8564_ $$uhttps://juser.fz-juelich.de/record/843827/files/rsif.2017.0713.pdf$$yOpenAccess
000843827 8564_ $$uhttps://juser.fz-juelich.de/record/843827/files/1802.05858.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000843827 8564_ $$uhttps://juser.fz-juelich.de/record/843827/files/rsif.2017.0713.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000843827 909CO $$ooai:juser.fz-juelich.de:843827$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000843827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162200$$aForschungszentrum Jülich$$b0$$kFZJ
000843827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143612$$aForschungszentrum Jülich$$b1$$kFZJ
000843827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168453$$aForschungszentrum Jülich$$b2$$kFZJ
000843827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140195$$aForschungszentrum Jülich$$b3$$kFZJ
000843827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b4$$kFZJ
000843827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich$$b5$$kFZJ
000843827 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000843827 9141_ $$y2018
000843827 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000843827 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000843827 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000843827 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ R SOC INTERFACE : 2015
000843827 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843827 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000843827 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843827 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000843827 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000843827 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000843827 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000843827 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000843827 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843827 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000843827 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000843827 9801_ $$aFullTexts
000843827 980__ $$ajournal
000843827 980__ $$aVDB
000843827 980__ $$aUNRESTRICTED
000843827 980__ $$aI:(DE-Juel1)IBG-1-20101118
000843827 980__ $$aI:(DE-Juel1)ICS-2-20110106
000843827 981__ $$aI:(DE-Juel1)IBI-5-20200312
000843827 981__ $$aI:(DE-Juel1)IAS-2-20090406