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Nutrient gradients and limitations play a pivotal role in the life of all microbes,

both in their natural habitat as well as in artificial, microfluidic systems.

Spatial concentration gradients of nutrients in densely packed cell confi-

gurations may locally affect the bacterial growth leading to heterogeneous

micropopulations. A detailed understanding and quantitative modelling

of cellular behaviour under nutrient limitations is thus highly desirable.

We use microfluidic cultivations to investigate growth and microbial

behaviour of the model organism Corynebacterium glutamicum under well-

controlled conditions. With a reaction–diffusion-type model, parameters are

extracted from steady-state experiments with a one-dimensional nutrient

gradient. Subsequently, we employ particle-based simulations with these

parameters to predict the dynamical growth of a colony in two dimensions.

Comparing the results of those simulations with microfluidic experiments

yields excellent agreement. Our modelling approach lays the foundation for

a better understanding of dynamic microbial growth processes, both in

nature and in applied biotechnology.

1. Introduction
Growth of cells is enabled by diffusive factors, a property which is universal for

all living processes ranging from growth of single bacteria [1,2] or eukaryotic

cells [3,4] to tissue [5–8] and biofilm formation [9–12]. There is a complex inter-

play between diffusion and uptake, strongly influenced by metabolism and

environment. Typically, various environmental perturbations—such as nutrient

gradients, oxygen depletion, temperature changes and others—occur simul-

taneously, rendering the analysis of nutrient limitations and their influence on

individual cellular systems challenging. Microfluidic cultivation systems—

which often consist of microfluidic growth chambers with well-controlled

nutrient supply—are ideal to analyse and quantify cellular behaviour under

defined environmental conditions [13,14]. They facilitate the investigation of

single selected limiting factors while keeping others in a defined range [15,16].

Furthermore, microfluidic cultivation enables observation of cellular growth pat-

terns by microscopy with a high spatio-temporal resolution. This combination

allows quantitative modelling and parameter extraction.Whereasmost microflui-

dic studies so far have used undefined or defined but non-limiting conditions for

the cultivation, only few studies have artificially limited cell growthwithinmicro-

fluidic devices [17–19]. To understand how nutrient limitation affects growth

patterns, we investigate the growth of the bacterium Corynebacterium glutamicum,

a non-motile bacterial model organism, at different distinct carbon-source
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concentrations. Our microfluidic system [20] acts as a

‘quasi’-chemostat and allows the investigation of growing

microcolonies in a two-dimensional monolayer under well-

defined environmental conditions (figure 1). In a first step,

we grow cells in a quasi-one-dimensional set-up, i.e. a wide

and open growth channel (figure 1b). We derive a minimal

theoretical model for growth which we fit to the steady-state

motion pattern of cells for a single experimental condition.

Our colony-growth model allows a direct read-off of the nutri-

ent-uptake function from experimental data; the results show

good agreement with Monod [21] and Teissier [22] nutrient-

uptake functions. With the fit we extract the length scale of

nutrient depletionwithin a colony and the nutrient dependency

of growth. In a second step, we extrapolate to other feeding

concentrations. Encouraged by excellent agreement, in a third

step we extrapolate from this steady-state, quasi-one-

dimensional geometry to the prediction of time-dependent

growth of bacteria in a genuine two-dimensional set-up

(growth chamber, figure 1c). To do so, we feed the fitted par-

ameters into a particle-based growth simulation [23] and

compare the shape and area of growing colonies over time.

The simulations show striking agreement with growth

dynamics observed experimentally, demonstrating the predic-

tive power of our minimal modelling approach. Currently,

measurements of concentration profiles on the microscale are

unfeasible. Our findings close this gap by providing a way to

quantify nutrient distributions from the measurable velocity

profile. Furthermore, our results serve as a basis for the design

of optimized microfluidic systems for microbial cultivation.

2. Results and discussion

2.1. Theory for nutrient uptake and biomass conversion
Cells need to metabolize nutrients in order to grow. The

amount of nutrients taken up depends on the concentration

g ¼ ĝ�g of nutrients available, where we introduce the dimen-

sionless concentration ĝ and the unit conversion factor �g.

Furthermore, it is reasonable to assume that the nutrient-

uptake rate u per bacterium has an upper bound u1�g.

Hence, we write the total nutrient-uptake rate per bacterium

as u1�gu(ĝ), where u(ĝ) is a dimensionless function varying

between zero and unity. The nutrient concentration field ĝ

thus obeys

@tĝ ¼ DDĝ� @u1u(ĝ), ð2:1Þ

where we assume the uptake to be linear in bacterial

number density @ and only diffusive nutrient transport [18]

with diffusion constant D. Bacteria convert the nutrients

absorbed into biomass with efficiency e, i.e. cells grow with

a rate of k ¼ eu1u(ĝ). Thus, the bacterial density evolves

according to

@t@ ¼ �r � (@v)þ @eu1u(ĝ), ð2:2Þ

with the bacteria flow velocity v. The efficiency parameter e

describes essentially the amount of nutrients a bacterium

needs to consume in order to divide. Similar reaction–

diffusion-type models have also been used, for example, to

investigate velocity and shape of bacterial growth fronts

[24] or the growth behaviour of bacterial aggregates [25].
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Figure 1. Microfluidic set-up. (a) Schematic of microfluidic experiment in which Corynebacterium glutamicum are grown. The microfluidic device provides constant

nutrient supply by the flow in the large feeding ducts; g1 denotes the feeding concentration. Inside the chamber the bacteria (blue) take up the nutrients, the local

concentration g drops and nutrient gradients occur (greyscale depicting local concentration). The bacteria grow and a flow towards the channel outlets evolves (red–

yellow arrows). (b) Snapshot of the growth channel set-up used to observe the steady-state flowfield of bacteria. Overlaid vectors depict the flowfield of bacteria

inside the channel, as measured by particle image velocimetry (PIV). Scale bar, 10mm. (c) Overlay of two snapshots at different time points of an experiment in a

growth chamber with narrow outlets to study the spreading dynamics of a bacterial colony. The yellow and white lines depict the perimeter of the colony at different

time points. Scale bar, 10mm.
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For constant bacterial density and fast diffusion, these

equations simplify to

Dĝ ¼
u(ĝ)

l2g
and r � v ¼ eu1u(ĝ), ð2:3Þ

with two parameters, the nutrient decay length lg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D=@u1
p

describing the ratio of nutrient-uptake rate to diffusive nutri-

ent flux, and the maximum growth rate kmax ¼ eu
1
.

Furthermore, the shape of the uptake function u(ĝ) deter-

mines at which nutrient-concentration scale limitation of

growth occurs. The exact uptake rate as a function of nutrient

availability u(ĝ) is generally not known; however, in one

dimension, model equations (2.3) can be rearranged to read

off u from a given velocity profile v(x). For a quasi-one-

dimensional colony of length 2L, with prescribed nutrient

concentration ĝ(+L) ¼ ĝ1 at the boundaries, elimination of

u(ĝ) from equations (2.3) yields

ĝ(x) ¼
V(x)� V0

kmaxl2g
, ð2:4Þ

where V(x) ¼
Ð x
x0
v(x0) dx0 the integral of v starting from the

flow symmetry axis x ¼ x0 (at which g0(x0) ¼ v(x0) ¼ 0) and

V0 ¼ kmaxl
2
gĝ(x0). Insertion of equation (2.4) into equation (2.3)

eliminates the nutrient concentration, so that

dv

dx
¼ kmaxu

V(x)� V0

kmaxl2g

 !

: ð2:5Þ

Thus, the shape of the uptake function u(ĝ), and the scalar

parameters lg and kmax can be extracted from a fit of our

model to experimental results for a quasi-one-dimensional

system, as will be discussed below.

2.2. Growth channel experiments with Corynebacterium

glutamicum
We investigated the growth of C. glutamicum in a quasi-one-

dimensional growth channel geometry (figure 1a,b) to facilitate

modelling and interpretation of growth patterns. To prevent

co-metabolism of different carbon sources [26], modified

CGXII medium without glucose was used as the growth

medium. Here protocatechuic acid (PCA) served as the sole

carbon source and growth limiting factor. We performed

growth channel experiments with four different con-

centrations in the feeding duct (figure 1a): g1 ¼ 48.75mM

(n ¼ 2 independent experiments), 97.5mM (n ¼ 3),

390 mM (n ¼ 3) and 585 mM (n ¼ 4) PCA in aqueous solution.

Time-lapse phase contrast microscopy images of the growing

microcolonies were recorded every Dt ¼ 5–10min over 40 h

of microfluidic cultivation to follow the growth on different

feeding levels. Starting from a few bacteria seeded into the

growth channel, bacteria grow, divide and populate all avail-

able space in the growth channel. Bacteria are pushed out of

the channel into the feeding duct and are dragged away by

the flow. Finally, a continuous steady state evolves which is

characterized by the balanced growth and outflow of bacteria

(see the electronic supplementary material, movie M1). Nutri-

ent limitation was clearly visible for the lowest feeding

concentrations 48.75 mM and 97.5 mM where we observed

an almost complete growth arrest in �2=3 of the growth

channel (see the electronic supplementary material, movie

M2). This decline of growth activity clearly demonstrates

the presence of nutrient gradients which develop on a

length scale of a few cell sizes. At the same time, for the high-

est feeding concentration 585mM (n ¼ 2), no growth arrest

zones were visible and bacterial biomass production took

place along the whole channel length, paralleled by a

strong flow of cells towards the channel outlets. For the inter-

mediate feeding concentration of 390mM, we observed a

mixed picture: the flow was clearly much stronger than for

the lowest feeding concentration, but a small fraction close

to the chamber centre exhibited low to no growth. To quan-

tify the observed growth patterns, we analysed the flow

patterns v ¼ (vx, vy) using PIV [27] (see Material and

methods). In the steady state, we observed a plug-like flow

with almost no dependence of the velocity on the y-position.

To compare the velocity profile with our theory, we define

v(x) as the average of vx along the y-direction and over all

steady-state time points. Resulting velocity profiles v for the

different feeding levels are shown in figure 2a. The growth

arrest zones are clearly visible. At the channel outlets, PIV

underestimates the velocity due to (i) bacteria being washed

out of the channel such that the correlation with the

next frame often fails and (ii) because velocity and frequency

of division events increase, both of which raise the diffi-

culty of a correct correlation match. Thus, the velocity

decrease close to the channel outlets and the corresponding

maxima are artefacts. We decided to limit our quantitative

analysis to a central region of the channel heuristically

defined as the interval between the two inflection points

closest to the two maxima at the channel outlets (x+;

figure 2a–c, vertical dashed-dotted lines). We also checked

the sensitivity of our results to include all data points up to

the velocity maxima near the channel outlets and found

only minor deviations.

2.3. Matching continuum model and experiments
We commence our analysis with the estimation of a suitable

uptake function u fromour velocity data. Relation (2.5) predicts

that a dv/dx2 V-plot of our measured velocity profiles col-

lapses onto the uptake function u if each curve is shifted

along the V-axis by an offset V0 ¼ kmaxl
2
gĝ(x0) proportional to

the concentration at the starting point x0 of the integration

(figure 3). An initial guess for the shifts Vi
0 is obtained easily

by visual inspection, because continuity demands that datasets

for dv/dx2 V from different experiments have to overlap.

Different models for uptake kinetics [21,22] agree on a set

of conditions:

linear for small concentrations u(ĝ) /

ĝ!0
ĝ, ð2:6Þ

saturating at high concentrations u(ĝ) �!
ĝ!1

1, ð2:7Þ

monotonically increasing u0 . 0 ð2:8Þ

and concave everywhere, i:e: u00 , 0: ð2:9Þ

which are also consistent with our data. We choose the unit

conversion factor �g such that the linear slope for small concen-

trations in condition (2.6) is equal to unity. Thus, the length

scale lg describes the exponential decay length of the nutrient

concentration under limiting conditions, where u(ĝ) � ĝ.

Conditions (2.6) and (2.7) imply a simple geometrical

interpretation of the parameters kmax and lg in the dv/dx2

V-plane. From equation (2.5) and condition (2.6), it follows

dv=dx ¼
ĝ!1

(V � Vi
0)=l

2
g, equation (2.5) and condition (2.7)

yield dv=dx ¼
ĝ!1

kmax. Hence, kmax and lg fix the initial slope
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and the saturation value of the dv/dx2 V-curve. We use two

common uptake models which comply with conditions (2.6)–

(2.9); Monod uptake u(ĝ) ¼ ĝ=(1þ ĝ) [21] is explored here

(figure 3); the very similar results for Teissier uptake

u(ĝ) ¼ 1� exp (�ĝ) [22] can be found in electronic supplemen-

tary material, figure S2. With a suitable uptake function u(ĝ)

our model, defined by equations (2.3), is complete and the

theoretical predictions can be fitted to the experimental data.

A direct fit of u in the dv/dx2 V diagram, using equation (2.5)

to estimate the parameters kmax and lg, provides an initial esti-

mate. However, the numbers are error-prone due to the

derivative of noisy experimental data. Thus, we fit the solution

of equations (2.3) for the velocity profile v(x) to the measured

flow profiles with kmax and lg as fit parameters. To account

for small deviations of the velocity symmetry axis position

from the channel centre, we employ the concentration at the

centre and the centre position as additional fit parameters

(see Material and methods for details). Note that in figure 3

the experiments at g
1
¼ 390mM span almost the full relevant

concentration range; thus, flow profiles v(x) are fitted for this

concentration and themodel is then used to predict the velocity

profiles at higher and lower concentrations. Model fits give

good predictions of experimental data, even for extrapolations

to very different concentrations (figure 2a). The corresponding

fitted Monod- and Teissier-uptake functions are depicted in

figure 3. For the positions x outside the interval x2 � x � xþ
used for the fit (figure 2 and electronic supplementary

material, figure S1, continuous model curves outside dashed-

dotted lines), model predictions agree reasonably well up to

the velocity maxima. Our model also predicts the nutrient con-

centration profile ĝ(x) inside the channel (figure 2b,c); however,

we emphasize that our fit procedure does not prescribe the

feeding concentrations g1 as present in the experiments. Com-

parison of the feeding concentrations via the linear relation

ĝ1 ¼ g1=�g thus provides an additional consistency check.

Linear fits (figure 5) match well and estimate the conversion

factor to �g ¼ 0:02mM for both Monod and Teissier uptake.

Note that the theoretical feeding concentration ĝ1 is estimated

from an extrapolation of the ĝ-profile to the channel outlets (for

details, see Material and methods). Owing to the reduced bac-

terial density, our model is not strictly valid at the channel

outlets; thus, this approach only provides an estimate of

the concentration scale �g. We define the concentration scale

g1/2 as the nutrient concentration at which uptake and

growth rates are half of their maximum values, thus for ĝ1=2
it holds u(ĝ1=2) ¼ 1=2. With the concentration scale �g, we

estimate g1/2 for Monod and Teissier uptake around g1/2 �

13220mM, which is about 5–10% of the PCA concentration

in standard CGXII medium; much lower than we previously

assumed for Monod kinetics (g1/2 ¼ 100mM) [18,26]. Our

585 mM390 mM97.5 mM48.75 mM
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Figure 2. Velocity and the nutrient concentration profile in growth channel

set-up. (a) Velocity profiles estimated by PIV of growth channel experiments

and subsequent averaging over the y-direction and time (circles). One

example for each feeding concentration g
1

is shown, as indicated in the

legend (see the electronic supplementary material, figure S1 for all data).

Owing to the symmetry of the velocity profile with respect to the channel

centre, the x-range from the channel centre to the feeding outlets is dis-

played. The flow symmetry axis position x0 has also been fitted to

account for small deviations from the channel centre at x ¼ 0. Dashed-

dotted vertical lines indicate the cut-off xþ used to constrain the data

range used for the fit to our analytic model equations (2.3) ( for details of

fit see Material and methods). Continuous lines show the velocity profiles

of the model fit using Monod uptake which has been extrapolated towards

the channel outlets. The line for the concentration g1 ¼ 48.75 is dashed to

increase visibility. Flow profiles of corresponding particle-based simulations

are shown with ‘þ ’-symbols. Experimental and simulation data have been

averaged over time and along the y-direction. (b– c) g- and u(g)-profiles

from model fit (continuous lines) and corresponding particle simulation

results (‘þ ’-symbols).
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Figure 3. Uptake function extracted from PIV data. A plot of dv/dx versus

V ¼
Ð x

x0
v(x0) dx0, the integral of v starting from the flow symmetry axis

at x ¼ x0, for different nutrient concentrations g1, as indicated in the

legend. Curves of the different experiments i have been shifted by

V i0 ¼ kmaxl
2
g ĝ

i(x0) according to equation (2.5), where the x i0 and V i0 have

been estimated by a least-square fit (details of fit described in Material

and methods). Black lines show fits with Monod uptake u ¼ ĝ=(1þ ĝ)

(continuous) and Teissier uptake u ¼ 1�exp (� ĝ) (dashed), the red ‘� ’

result of a corresponding particle-based simulation. Experimental and

simulation data have been averaged over time and along the y-direction.
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observedmaximal growth rate of around kmax � 0.22 0.26 h21

agreeswell with previous observations [26]. The nutrient decay

length of lg � 3.82 4.2mm falls in the range of lg � 2–5mm

which can be estimated from previous results [26], which are

affected, however, by large uncertainties. In particular, the con-

version of uptake rates measured per gram cell dry weight

(gCDW) into uptake per single cell is prone to large errors,

because reported single-cell weights vary by an order of mag-

nitude [18]. However, it is important to emphasize that the

parameter estimates of previous studies [26] were based on

the assumption of spatial homogeneity. Our main result here

is that nutrient gradients are very important and have to be

considered. Thus, it is no surprise that estimates differ, and

we deem the approach of the present study to be more reliable

(see table 1 for all fit results).

2.4. Spreading dynamics of C. glutamicum
We adapted a particle-based simulation technique for grow-

ing tissues [23] to quantitatively predict bacterial growth

and nutrient distribution inside arbitrarily shaped growth

chambers. In short, each bacterium is represented by two

point particles that repel each other by a growth force. After

a critical size threshold is reached, the cell divides, and two

new particles are added. To model the feedback on growth,

the growth force is taken to be proportional to the nutrient

uptake. Nutrients are supplied with constant density at the

outlets and are consumed by the bacteria (for details of the

simulation technique, see Material and methods). This

model and simulation technique is also able to incorporate

features currently not taken into account, such as the finite

elasticity of bacteria or pressure-dependent growth, offering

many possibilities for further studies. To demonstrate the pre-

dictive power of our simulation model, we calculate the time-

dependent growth of bacteria inside a rectangular growth

chamber with two narrow feeding outlets at both sides,

as depicted in figure 1a and c, and compare our predic-

tions with experimental results. In the experiments, we

analyse spreading of a colony of C. glutamicum with pre-

scribed feeding concentrations g1 ¼ 19.5 mM (n ¼ 3) and

g1 ¼ 195 mM (n ¼ 7). A few bacteria are seeded in the

growth chamber at t ¼ 0, and subsequent colony spreading

is observed via time-lapse imaging. Clearly, the spreading

dynamics is very sensitive to the initial conditions. If initially

all bacteria are concentrated at one spot, a single circular

colony develops, whereas if the bacteria are initially distribu-

ted over the chamber, multiple separate colonies grow

and finally merge (see figure 4a(i),b(i),c(i),d(i) and electronic

supplementary material, figure S3). The simulations are initi-

alized with the same amount of cells at identical positions

as in the experiment. We convert the experimental feeding

concentration g1 to simulation units via the previously

calculated concentration scale �g. Visual comparison of the

shape of the colony predicted by simulations and observed

in experiments already shows excellent agreement, with

growth patterns in nice synchrony (figure 4a(ii),b(ii),c(ii),d(ii)),

especially for colonies larger than A ¼ 500 mm2. Furthermore,

the overall colony area A(t) over time serves as an easily acces-

sible quantifier for comparison (figure 4a(iii),b(iii),c(iii),d(iii)).

The growth of colonies consisting of only a few bacteria

depends strongly on the state of the cell cycle of every indivi-

duum, such that we expect a large variability in growth.

Therefore, we expect that our model agrees best in the later

stages of the experiment, when memory effects have worn

out and the continuum description is appropriate. The simu-

lation time axis is therefore shifted such that A(t) coincides

with the last data point of the experiment. For experiments

with concentration g
1
¼ 195 mM (i.e. half our ‘fitting concen-

tration’), simulations agree very well with experiments even

down to colonies consisting of only the few cells at the starting

point of the experiment (figure 4a–c). When extrapolating to

the much lower concentration g1 ¼ 19.5 mM (figure 4d ),

simulations still agree remarkably well for colonies larger

than about 500 mm2. In experiments with very low nutrient

concentrations (g1 ¼ 19.5 mM), bacteria initially grow faster

than predicted. This may be due to cell-history effects from

preculture, e.g. carbon storage, or effects from the differences

in population densities present in growth-channel exper-

iments versus the smaller initial density in growth-chamber

experiments. A quantitative understanding of this effect

requires a more detailed study in the future.

Furthermore, our observations suggest directed growth

towards the channel inlets. While, initially, colonies grow in a

more or less circular shape, some elongate over time. The

effect is weak, and sometimes caused by previous wall contact.

However, in some cases (right colony in figure 4d and

electronic supplementary material, figure S3 (II) and (IV))

orientation towards the inlets is visible. This indicates that

the nutrient gradients, as predicted by the local growth profile

u(g) (figure 4a(ii),b(ii),c(ii),d(ii)) of our model, directly affect the

temporal expansion of the colony. However, these changes in

shape are subtle and further quantitative analysis is required.

Simulations can be improved further when hindered dif-

fusion through bacteria is considered. In our model, this can

be accounted for in a coarse-grained manner by defining two

different diffusion constants, Dbulk and Dfree inside and out-

side of the colony, respectively. For a spatially changing

diffusion coefficient, the DDg term in equation (2.1) has

then to be replaced by r . (Drg) ¼ DDg þ rD .rg. The

agreement with experiments is best for Dfree/Dbulk � 1.25,

a surprisingly small impediment if the bacteria were

considered as obstacles [28,29].

3. Conclusion
In summary, we have shown how microfluidic devices can be

exploited to measure the effect of nutrient availability and

limitation on growth and transport in bacterial microcolonies.

With some simple assumptions, like diffusive transport and

mass balancing, we are able to quantitatively model growth

and uptake kinetics. Our results show that at low nutrient

concentration gradients in growth develop rapidly after a

critical cell-colony size is reached (figure 4), both in exper-

iment and simulation. It would be interesting to extend

Table 1. Fit results for model parameters obtained from a least-squares

minimization. Error ranges refer to the square-root of the diagonal entries

of the covariance matrix, as reported by least_squares().

uptake kmax (h
21) lg (mm) g1/2 (mM)

Monod 0.26+ 0.06 3.78+ 0.17 19.9+ 1.5

Teissier 0.20+ 0.03 4.18+ 0.14 13.6+ 0.9
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such studies to growth dynamics in the presence of anti-

biotics [30]. Furthermore, this approach should also work

for eukaryotic and even mammalian cells and cell lines,

where nutrient limitation can be of pivotal importance [4].

The modelling framework presented here can also be used

and extended to optimize microfluidic geometries to guaran-

tee and maintain optimal nutrient supply [18]. In particular,

we hope that our results will stimulate a discussion about

the existence and influence of environmental gradients

within microfluidic cultivation systems. Our results can

also serve as a basis for studies in related fields, such as the

investigation of mechanical forces within cell growth and

development [31–35]. Here, our approach could be used

to quantitatively determine the effect of nutrient trans-

port and limitation in order to extract the contribution of

mechanical forces.
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Figure 4. Dynamics of two-dimensional colony growth. Four examples of colony-spreading dynamics in simulation and experiment (see also the electronic sup-

plementary material, movies M3–M6). Rows (a)– (c) belong to experiments with g1 ¼ 195 mM while (d ) shows an experiment with feeding concentration of

g1 ¼ 19.5 mM. (a(i),b(i),c(i),d(i)) Depiction of the colony shape dynamics in experiments. The outlines of the colony at equidistant time points are shown in

different colours with a periodic colour scale (legend on top), 12 h have passed between two rings with the same colour. (a(ii),b(ii),c(ii),d(ii)) Same depiction

as in the left column for outlines from the corresponding simulation with Dfree/Dbulk ¼ 1.25 (colourscale for outlines of the colony is the same as in the left

column). The grey-shaded area around the colonies shows the profile of u(g) at the last time point, illustrating the local limitation of growth due to nutrient

depletion (legend on top). (a(iii),b(iii),c(iii),d(iii)) shows comparison of total colony area A(t) in experiment (red line) and five corresponding simulations

(dashed lines) with Dr: ¼ Dfree/Dbulk ¼ 1, 1.25, 1.5, 2, 3. The simulations have been shifted along the time axis such that they cross the last data point of the

experiment (see electronic supplementary material, figure S5).
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4. Material and methods

4.1. Microbial strain and cultivation
Model organism in this study was C. glutamicumwild-type (ATCC
13032). Microfluidic cultivations were performed using two differ-
ent cultivation chamber systems. For steady-state growth, a
monolayer growth chamber as described by Mather et al. [17]
was used,with a chamber dimension of 40 � 75 � 1 mm. For dyna-
mical growth studies, the cultivation system described by [36] was
applied. For chip fabrication details and further information the
reader is referred to [36,37]. To prevent co-metabolism of different
carbon sources [26], modifiedCGXIImediumwithout glucosewas
used as the growth medium. Here protocatechuic acid (PCA)
serves as a sole carbon source and was varied in concentration
within the different sets of experiments. Modified CGXII
mediumwas infused at approx. 200nl min�1 after cell inoculation.
Phase equilibrium experiments were performed as follows.
First cells were cultivated at 10 � standard PCA concentration
(195mM) until chambers were filled; afterwards medium was
switched to the desired concentration of PCA for steady-state
experiments. Microfluidic pre-cultivation in 10 � PCA was
chosen to ‘equilibrate’ cellular metabolism to the carbon source
and to reduce the experimental time span for filling the micro-
fluidic cultivation chambers. In the dynamic growth experiments
(figure 4), cells were directly cultivated under the desired
PCA concentration.

4.2. Live-cell imaging and analysis
The microfluidic chip was mounted onto a motorized inverted
microscope (Nikon Eclipse Ti, Nikon microscopy, Germany)

equipped with an incubator to keep the temperature at 308.
Time-lapsephase-contrastmicroscopy imagesof thegrowingmicro-
colonies were recorded every 5–10 min for the growth channel
experiments andevery30min for the colony-spreadingexperiments
over 50 h of microfluidic cultivation. After the microfluidic cultiva-
tion, chambers were manually inspected and selected for analysis.
Recordings, in which fabrication inaccuracies led to unstable
steady-state growth or steady-state growth in which differentiation
of single cellswasnot possible anymore,were not further processed.
Afterwards, we used the ImageJ PIV plugin implemented by Tseng
[38] to quantify the velocity field in steady-state experiments. In
dynamic growth experiments, the total area has been identified
using the ‘Auto Threshold’-Plugin in ImageJ to identify the outline
of the bacterial colony. Hereby, small void spaces inside the
colony are also added up to the total area. Measurements of the
total area occupied by the colony have been performed in simu-
lations by subdivision of the simulation domain in a two-
dimensional grid and checking which lattice sides were occupied
byat least one cell.We chose quarter the radius of the repulsive inter-
action between particles as the grid constant. We applied a binary
closing on the resulting occupation matrix to close small holes
inside of the occupation matrix. The area was then defined as the
number of occupied lattice sites in the resulting matrix.

4.3. Fitting procedure
To extract values for the model parameters, namely maximum
growth rate kmax ¼ eu

1
and nutrient diffusion length scale lg, we

fit our model equations (2.3) to the velocity profiles vexp measured
in experiments. For the uptake function, we tested two different
models: Monod uptake [21] u(ĝ) ¼ ĝ=(1þ ĝ) and Teissier uptake
[22] u(ĝ) ¼ 1� exp (�ĝ). In one dimension, equations (2.3) read

ĝ00 ¼
u(ĝ)

l2g
ð4:1Þ

and

v0 ¼ kmaxu(ĝ), ð4:2Þ

with the prime denoting spatial derivatives. Insertion of u(ĝ) from
equation (4.1) into the equation for v (4.2) leads to

v0 ¼ kmaxl
2
gĝ

00:

Owing to themirror symmetryaroundthe channel centrex0 :¼ 0
of our set-up, the boundary conditions read v(x0) ¼ ĝ0(x0) ¼ 0.
Integrating once, we obtain

v(x) ¼ kmaxl
2
gĝ

0(x): ð4:3Þ

We integrate equation (4.1) by using the odeint() method
of the python package SciPy [39]. The corresponding velocity
profile is then given according to equation (4.3). We fit the
model solution for the velocity profile to the velocity profiles
vexp measured in the experiments by means of a least-squares
optimization. To avoid confusion, we enumerate quantities
belonging to different experiments with a superscript i in the fol-
lowing, e.g. vexp,i denotes the velocity profile of experiment i. We
define the cost function P by the sum of the squared deviations
at all points xij within the fit range measured in experiments:

P ¼
X

ij

vexp,i(xij)� kmaxl
2
g

dĝi

dx
(xij)

� �2

: ð4:4Þ

To account for small deviations of the symmetry axis of the
experimental flow profiles from the channel centre the positions
xi0 are also free fit parameters. Resulting symmetry axis posi-
tions xi0 deviate only slightly from the channel centre with a
relative error x0/2L, 2.5%. We minimize the cost function P

with respect to the parameter lg, the prefactor l :¼ kmaxl
2
g of g

0 in
equation (4.4), and the set of symmetry axis positions fxi0g and

ĝ
•

, +L

ĝ
•

, –L

ĝ

ĝ

–L L0

30
Monod Teissier

15

0

48.75 97.5 390 585 48.75 97.5 390 585

x–

x

x+

g (mM) g (mM)

(b) (c)

(a)

Figure 5. Extrapolation to ĝ1. (a) Owing to the decreasing quality of the PIV

data at the channel outlets, the model fit of the velocity profile is constrained

to the data between the two points x+ (red vertical lines). To get an esti-

mate for ĝ1, we solve the ode equation (4.1) for the concentration ĝ (blue

curve) with the fitted model parameters outside the range x2 � x � xþ
used for the fit (dashed red lines). Owing to the slight deviation of the

fitted symmetry axis (green vertical) from the centre x ¼ 0, the estimates

for ĝ1,+L for ĝ1 differ slightly. (b,c) Linear fit ĝ ¼ g=�g of the concentration
ĝ extrapolated at the channel outlets from our theory and the corresponding

concentration in experiment g for Monod and Teissier uptake. (Online version

in colour.)
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central concentrations {ĝ(xi0)}. Thus, for a set of N experiments the
fit parameter space is of dimensionality 2 þ 2N. Minimization is
performed with the least_squares() method of the SciPy
python package [39].

As discussed in the main text, the three independent exper-
iments belonging to the PCA concentration g

1
¼ 390mM cover

almost the complete range of the uptake function as can be seen
in figure 3. To probe the validity of our model, we estimate the
model parameters lg and kmax using these experiments, and extrap-
olate to all other experiments. In the remaining experiments only
the symmetry points fxi0g and central concentrations {ĝ(xi0)} are
obtained by minimization.

With the optimal fit solutions for the concentrations ĝ at
hand, we can estimate the remaining physical parameter,
the concentration scale g1/2 at which growth and uptake are
at half their maximum values. To calculate these values in
physical units, we need to estimate the concentration scale �g

which links between dimensionless theory concentrations ĝ and
experimental concentrations g via ĝ ¼ g=�g. We estimate �g by
comparison of the feeding concentrations g

1
present at the

channel entries and their model prediction ĝ1. We calculate
ĝ1 by extrapolation of the concentration profile g towards the
channel entries at x ¼+L (figure 5). We expect that this extra-
polation only results in coarse estimates for the concentrations
g
1

because our model is not strictly valid at the channel
entries due to reduced bacterial density. Furthermore, due to
the slight deviation of the fitted symmetry axis position xi0
from the channel centre at x ¼ 0, the extrapolation results in
two different concentration values at the entries at x ¼+L.
We define ĝ1 as their mean. The extrapolated concentration
values ĝ1 show a good agreement with a linear fit ĝ ¼ g=�g as
depicted in figure 5b,c. The good match of experimental and
theoretical concentrations provides thus an additional consist-
ency check for our model. Table 1 shows a summary of all
model parameters resulting from our fitting procedure using
Monod or Teissier uptake.

4.4. Simulation model
Webase our simulation on the previously published particle-based
model used to study the dynamics of growing systems in various
contexts [23,33,40,41]. In this model, cells consist of two particles
that separate due to a repulsive growth force Fg¼ B/(r þ r0)

2,
with force constants B and r0 (figure 6). Additionally, a friction
force between the two cell particles Fc ¼2gcvc is added, with vc

denoting the relative velocity of the particles constituting one
cell. At a given size threshold dc the cell divides, and two new
daughter cells are placed in close proximity to the mother cell.
The friction constant gc is chosen large enough to result in
overdamped growth dynamics. Intracell noise is added in a
Brownian dynamics fashion [42]; we denote the corresponding

diffusion constant by Dc. The division time of an isolated cell tsimdiv
is then given by

tsimdiv ¼
gc
B

ðdc

0
(rþ r0)

2 dr: ð4:5Þ

Two particles at positions ri and rj with rij ¼ jri2 rjj, belonging
to different cells, interact with each other with a force of magni-
tude Fcc ¼ f0(1/r

5
ij2 1)2 f1 directed along the unit vector

r̂ij ¼ (ri � rj)=rij. In this study, we set the attractive component to
zero, i.e. f1 ¼ 0 for all simulations. Dissipation and fluctuation
forces between particles of different cells are modelled according
to the dissipative particle dynamics technique [42], the correspond-
ing friction constant and diffusion constant are denoted by gt and
Dt, respectively. A background friction force Fb ¼2gbv with fric-
tion constant gb and v, the velocity in the laboratory coordinate
system, acts on all particles. The corresponding background
noise is modelled in a Brownian dynamics fashion [42] with
diffusion constant Db. All forces are cut-off at a cut-off radius
rcut ¼ 1.1mm. We set the diffusion constants Db,c,t of all
particle–particle interactions to 1.21� 1023mm2 h21.

We integrate the nutrient dynamic equation (2.1) on a square
lattice (xi, yj) ¼ h(i, j ) with lattice constant h ¼ 1mm. We employ
a forward-time, central-space finite-difference scheme taking into
account spatial varying diffusion constants [43]. In the following,
we denote quantities estimated at grid site (xi, yj) in simulations
with a subscript ij, e.g. the concentration ĝij ¼ ĝ(xi, yj). We set the

growth force size threshold division

dc

(b)(a) (c)

Figure 6. Schematic of the growth model in simulations. (a) Every cell consists

of two point particles which interact with particles of other cells with a purely

repulsive interaction, the excluded volume being indicated by spheres. Particles

of the same cell repel each other with a growth force Fg ¼ B/(r þ r0)
2 until a

size threshold dc is reached. (b,c) At the size threshold a cell divides: two new

daughter cells are placed in close proximity to the mother cell particles. The

growth force strength B is proportional to the local nutrient uptake

(see equation (4.6)) to achieve nutrient-dependent growth. (Online version

in colour.)
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simulation, kdiv = kmax u(g) with measured density

theory, kdiv = kmax u(g) with constant density
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(different colours correspond to different concentrations; see legend at

bottom). Horizontal dotted line depicts density value of @ ¼ 0.66 mm22

used to calculate the uptake rate u1 ¼ D/l2g@ for the simulations from

the fitted value for l2g. (b) Division rate kdiv, directly measured during simu-

lation by counting division events (empty circles), from kdiv ¼ kmaxu(̂g(x))

with ĝ(x) measured in simulations (dashed lines) and as predicted by the

theoretical model assuming constant density (continuous lines). Depicted

results for number density and division rate have been obtained by averaging

over time and along the y-direction. (Online version in colour.)
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diffusion constant equal to Dfree at every lattice site with no cell
inside and to a smaller value Dbulk � Dfree at every site with
at least one cell present. This models the hindered diffusion of
nutrient molecules around and through the cell membrane
in a coarse-grained manner. Analytical calculations in [28,29]
provide the expression Dbulk ¼ Dfree((12 n)/(1 þ n)) for a two-
dimensional array of impermeable cylinders with packing fraction
n. The packing fraction of bacteria of approx. n � 0.5 thus results in
Dbulk=Dfree ¼

1
3. The local cell density @ij is obtained from the centre

of mass coordinates of cells binned on the lattice. The cell density
@ij is used to calculate the local uptake rate u1@iju(ĝij) which enters
the diffusion equation (2.1). We confirmed consistency of results
with double or half the grid constant h and agreementwith analyti-
cal solutions of the one-dimensional equation (4.1).

To transfer the diffusion length scale lg from our model fit to
simulations, we choose u

1
¼ Dbulk/(l

2
g@exp.) with @exp. ¼ 0.66

mm22. As the diffusion constant DPCA of our limiting factor PCA
is of the order of 100mm2 s21 [44], the concentration profile equili-
brates in a timespan tdiff ¼ L2/D on the order of seconds. As
bacteria move with a few mmh21 and divide on a timescale of
tdiv ¼ 1/kmax ¼ 32 4 h, the timescale of bacterial dynamics tbact
is on the order of a few hours. Thus, the concentration profile
equilibrates almost instantly on the timescale of bacterial
dynamics. Hence, in simulations, it is not necessary to set exactly
Dfree ¼ DPCA, any value of Dfree large enough such that tdiff �

tbact will result in the same bacterial dynamics (as long as u
1
is

scaled accordingly). For numerical efficiency we choose diffusion
constantsDbulk ¼ 2478 mm2 h21 (Dbulk ¼ 1888mm2 h21 for Teissier
uptake), large enough such that tdiff � tdiv.

To reproduce the local growth rate kg ¼ kmaxu(ĝ) of bacteria
(see equation (2.3)) in simulations, we let the growth force con-
stant B depend on the local uptake u(ĝ) (compare equation (4.5))

B(ĝ) ¼
gckmaxu(ĝ)

log (2)

ðdc

0
(rþ r0)

2 dr: ð4:6Þ

Note that expression (4.5) is only valid if the growth force
scale B is much larger than the pressure forces the cells are
exposed to in the bulk. We can estimate these forces by consider-
ing the force balance equation p0 ¼2@gbv in our one-dimensional
model. With vanishing pressure at the channel entries x ¼+L

the maximum pressure in the channel centre scales with p ≏

@kmaxgbL
2. For the set of simulations as presented in the main

text, we aim to stay close to the dynamics as described by
model equations (2.1) and (2.2) and choose gc such that B(g)�
@kmaxgbL

2, i.e. growth is pressure independent.1 The smooth
repulsion potentials result in a non-zero compressibility K scaling
with the repulsive force constant 1/K ≏ f0. Therefore, the number
density increases towards the channel centre where pressure is
largest (figure 7a). Owing to the non-constant bacterial density
@ in simulations the concentration profile in simulations is not
exactly given by the solution of model equation (2.1) which
assumes constant density. As the concentration profile enters
in equation (4.6) to determine the local growth rate, model
and simulation division rate agree only if the repulsive force con-
stant f0 is large enough to result in only small variations of the
number density around @exp. For the simulations as presented
in the main text, we choose a rather large repulsive force constant
of f0/gb ¼ 460mmh21. Thus, separate measurements of the div-
ision rate confirm the match between model and simulation
(figure 7b).

We also performed growth channel simulations with softer
cells and pressure-dependent growth which resulted in velocity
profiles similarly to those presented in figure 2a. However, the
match of feeding concentrations in simulations and experiment,
as expressed in the linear relationship ĝ ¼ g=�g in figure 5b,c,
had a larger error. All simulation parameters are summarized
in table 2.
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Endnote
1If the scales of local pressure and growth pressure are comparable,
growth behaves according to the homeostatic pressure model with a
growth rate kg / ph2 p, ph being a species-dependent constant
called the homeostatic pressure [23,45].

Table 2. Summary of simulation parameters. Forces are given relative to

the background friction constant gb.

parameter value description

dtDPD 5�1025 h DPD-integration timestep

h 1mm finite-difference grid

constant

dtFD 1025 h finite-difference timestep

r0 1.1 mm growth pressure constant

rcut 1.1 mm cut-off radius of all pair-

potentials

dc 1.1 mm size threshold for cell

division

rc 1.1 �1025 mm distance at which new

particles are placed

after division

Db 1.21�1023 mm2 h21 background noise diffusion

constant of bacteria

Dt 1.21�1023 mm2 h21 intercell noise diffusion

constant of bacteria

Dc 1.21�1023 mm2 h21 intracell noise diffusion

constant of bacteria

gt/gb 1 intercell friction constant

gc/gb 104 intracell friction constant

f0/gb 460 mm h21 repulsive force constant

f1/gb 0mm h21 attractive force constant

Dbulk 2478(1888) mm2 h21 nutrient diffusion constant

inside colony for

Monod (Teissier) uptake

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
15:

20170713

9



References

1. Wang P, Robert L, Pelletier J, Dang WL, Taddei F,

Wright A, Jun S. 2010 Robust growth of escherichia

coli. Curr. Biol. 20, 1099–1103. (doi:10.1016/j.cub.

2010.04.045)

2. Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin

PA, Paulsson J, Vergassola M, Jun S. 2015 Cell-size

control and homeostasis in bacteria. Curr. Biol. 25,

385–391. (doi:10.1016/j.cub.2014.12.009)

3. Gospodarowicz D, Moran JS. 1976 Growth

factors in mammalian cell culture. Annu. Rev.

Biochem. 45, 531–558. (doi:10.1146/annurev.bi.45.

070176.002531)
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48. Jülich Supercomputing Centre. 2016 JURECA:

general-purpose supercomputer at Jülich
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