001     843897
005     20210129232720.0
024 7 _ |a 10.1016/j.physa.2018.02.021
|2 doi
024 7 _ |a 0378-4371
|2 ISSN
024 7 _ |a 1873-2119
|2 ISSN
024 7 _ |a WOS:000430027400011
|2 WOS
037 _ _ |a FZJ-2018-01424
082 _ _ |a 500
100 1 _ |a Wang, Jiayue
|0 P:(DE-Juel1)171262
|b 0
|e Corresponding author
245 _ _ |a Linking pedestrian flow characteristics with stepping locomotion
260 _ _ |a Amsterdam
|c 2018
|b North Holland Publ. Co.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1519741952_17495
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a While properties of human traffic flow are described by speed, density and flow, the locomotion of pedestrian is based on steps. To relate characteristics of human locomotor system with properties of human traffic flow, this paper aims to connect gait characteristics like step length, step frequency, swaying amplitude and synchronization with speed and density and thus to build a ground for advanced pedestrian models. For this aim, observational and experimental study on the single-file movement of pedestrians at different densities is conducted. Methods to measure step length, step frequency, swaying amplitude and step synchronization are proposed by means of trajectories of the head. Mathematical models for the relations of step length or frequency and speed are evaluated. The problem how step length and step duration are influenced by factors like body height and density is investigated. It is shown that the effect of body height on step length and step duration changes with density. Furthermore, two different types of step in-phase synchronization between two successive pedestrians are observed and the influence of step synchronization on step length is examined.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Boltes, Maik
|0 P:(DE-Juel1)132064
|b 1
|e Corresponding author
700 1 _ |a Seyfried, Armin
|0 P:(DE-Juel1)132266
|b 2
|e Corresponding author
700 1 _ |a Zhang, Jun
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Ziemer, Verena
|0 P:(DE-Juel1)164395
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Weng, Wenguo
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.physa.2018.02.021
|g p. S0378437118300979
|0 PERI:(DE-600)1466577-3
|p 106-120
|t Physica / A
|v 500
|y 2018
|x 0378-4371
856 4 _ |u https://juser.fz-juelich.de/record/843897/files/PHYSA%2019141.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843897/files/PHYSA%2019141.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843897/files/PHYSA%2019141.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843897/files/PHYSA%2019141.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843897/files/PHYSA%2019141.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843897/files/PHYSA%2019141.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:843897
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132266
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)164395
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYSICA A : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21