001     843901
005     20210129232723.0
024 7 _ |a 10.1016/j.coal.2018.02.002
|2 doi
024 7 _ |a 0166-5162
|2 ISSN
024 7 _ |a 1872-7840
|2 ISSN
024 7 _ |a 2128/17512
|2 Handle
024 7 _ |a WOS:000428831300013
|2 WOS
037 _ _ |a FZJ-2018-01428
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Bahadur, Jitendra
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Porosity of the Marcellus Shale: A contrast matching small-angle neutron scattering study
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604993578_4036
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neutron scattering techniques were used to determine the effect of mineral matter on the accessibility of water and toluene to pores in the Devonian Marcellus Shale. Three Marcellus Shale samples, representing quartz-rich, clay-rich, and carbonate-rich facies, were examined using contrast matching small-angle neutron scattering (CM-SANS) at ambient pressure and temperature. Contrast matching compositions of H2O, D2O and toluene, deuterated toluene were used to probe open and closed pores of these three shale samples. Results show that although the mean pore radius was approximately the same for all three samples, the fractal dimension of the quartz-rich sample was higher than for the clay-rich and carbonate-rich samples, indicating different pore size distributions among the samples. The number density of pores was highest in the clay-rich sample and lowest in the quartz-rich sample. Contrast matching with water and toluene mixtures shows that the accessibility of pores to water and toluene also varied among the samples. In general, water accessed approximately 70–80% of the larger pores (>80 nm radius) in all three samples. At smaller pore sizes (~5–80 nm radius), the fraction of accessible pores decreases. The lowest accessibility to both fluids is at pore throat size of ~25 nm radii with the quartz-rich sample exhibiting lower accessibility than the clay- and carbonate-rich samples. The mechanism for this behaviour is unclear, but because the mineralogy of the three samples varies, it is likely that the inaccessible pores in this size range are associated with organics and not a specific mineral within the samples. At even smaller pore sizes (~<2.5 nm radius), in all samples, the fraction of accessible pores to water increases again to approximately 70–80%. Accessibility to toluene generally follows that of water; however, in the smallest pores (~<2.5 nm radius), accessibility to toluene decreases, especially in the clay-rich sample which contains about 30% more closed pores than the quartz- and carbonate-rich samples. Results from this study show that mineralogy of producing intervals within a shale reservoir can affect accessibility of pores to water and toluene and these mineralogic differences may affect hydrocarbon storage and production and hydraulic fracturing characteristics.
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 0
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Geosciences
|0 V:(DE-MLZ)SciArea-140
|2 V:(DE-HGF)
|x 0
650 1 7 |a Earth, Environment and Cultural Heritage
|0 V:(DE-MLZ)GC-170-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-3: Very small angle scattering diffractometer with focusing mirror
|f NL3auS
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS3-20140101
|5 EXP:(DE-MLZ)KWS3-20140101
|6 EXP:(DE-MLZ)NL3auS-20140101
|x 1
700 1 _ |a Ruppert, Leslie F.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pipich, Vitaliy
|0 P:(DE-Juel1)130893
|b 2
|u fzj
700 1 _ |a Sakurovs, Richard
|0 0000-0003-0967-6560
|b 3
700 1 _ |a Melnichenko, Yuri B.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.coal.2018.02.002
|g Vol. 188, p. 156 - 164
|0 PERI:(DE-600)1494708-0
|p 156 - 164
|t International journal of coal geology
|v 188
|y 2018
|x 0166-5162
856 4 _ |u https://juser.fz-juelich.de/record/843901/files/1-s2.0-S0166516217307292-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843901/files/pipich_Bahadur%20et%20al%20revised_final.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/843901/files/1-s2.0-S0166516217307292-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843901/files/1-s2.0-S0166516217307292-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843901/files/1-s2.0-S0166516217307292-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843901/files/1-s2.0-S0166516217307292-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843901/files/1-s2.0-S0166516217307292-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843901/files/pipich_Bahadur%20et%20al%20revised_final.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/843901/files/pipich_Bahadur%20et%20al%20revised_final.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/843901/files/pipich_Bahadur%20et%20al%20revised_final.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/843901/files/pipich_Bahadur%20et%20al%20revised_final.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/843901/files/pipich_Bahadur%20et%20al%20revised_final.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:843901
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130893
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 0
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J COAL GEOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21