000843903 001__ 843903
000843903 005__ 20250129092351.0
000843903 0247_ $$2doi$$a10.1088/1748-0221/13/01/C01042
000843903 0247_ $$2Handle$$a2128/17543
000843903 0247_ $$2WOS$$aWOS:000423302400017
000843903 037__ $$aFZJ-2018-01430
000843903 041__ $$aEnglish
000843903 082__ $$a610
000843903 1001_ $$0P:(DE-Juel1)169828$$aKumar, S.$$b0$$eCorresponding author
000843903 245__ $$aPhotodetection Characterization of SiPM Technologies for their Application in Scintillator based Neutron Detectors
000843903 260__ $$aLondon$$bInst. of Physics$$c2018
000843903 3367_ $$2DRIVER$$aarticle
000843903 3367_ $$2DataCite$$aOutput Types/Journal article
000843903 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1519722062_17493
000843903 3367_ $$2BibTeX$$aARTICLE
000843903 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843903 3367_ $$00$$2EndNote$$aJournal Article
000843903 520__ $$aSmall-angle neutron scattering (SANS) experiments have become one of the most important techniques in the investigation of the properties of material on the atomic scale. Until 2001, nearly exclusively 3He-based detectors were used for neutron detection in these experiments, but due to the scarcity of 3He and its steeply rising price, researchers started to look for suitable alternatives. Scintillation based solid state detectors appeared as a prominent alternative. Silicon photomultipliers (SiPM), having single photon resolution, lower bias voltages compared to photomultiplier tubes (PMT), insensitivity to magnetic fields, low cost, possibility of modular design and higher readout rates, have the potential of becoming a photon detector of choice in scintillator based neutron detectors. The major concerns for utilizing the SiPM technology in this kind of applications are the increase in their noise performance and the decrease in their photon detection efficiency (PDE) due to direct exposure to neutrons. Here, a detailed comparative analysis of the PDE performance in the range between UV and NIR parts of the spectra for three different SiPM technologies, before and after irradiation with cold neutrons, has been carried out. For this investigation, one digital and two analog SiPM arrays were irradiated with 5Å wavelength cold neutrons and up to a dose of 6×1012 n/cm2 at the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany.
000843903 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000843903 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000843903 588__ $$aDataset connected to CrossRef
000843903 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000843903 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000843903 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000843903 7001_ $$0P:(DE-Juel1)161528$$aDurini, D.$$b1
000843903 7001_ $$0P:(DE-Juel1)167475$$aDegenhardt, C.$$b2
000843903 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b3$$ufzj
000843903 773__ $$0PERI:(DE-600)2235672-1$$a10.1088/1748-0221/13/01/C01042$$gVol. 13, no. 01, p. C01042 - C01042$$n01$$pC01042 - C01042$$tJournal of Instrumentation$$v13$$x1748-0221$$y2018
000843903 8564_ $$uhttps://juser.fz-juelich.de/record/843903/files/Kumar_2018_J._Inst._13_C01042.pdf$$yRestricted
000843903 8564_ $$uhttps://juser.fz-juelich.de/record/843903/files/Kumar_2018_J._Inst._13_C01042.gif?subformat=icon$$xicon$$yRestricted
000843903 8564_ $$uhttps://juser.fz-juelich.de/record/843903/files/Kumar_2018_J._Inst._13_C01042.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000843903 8564_ $$uhttps://juser.fz-juelich.de/record/843903/files/Kumar_2018_J._Inst._13_C01042.jpg?subformat=icon-180$$xicon-180$$yRestricted
000843903 8564_ $$uhttps://juser.fz-juelich.de/record/843903/files/Kumar_2018_J._Inst._13_C01042.jpg?subformat=icon-640$$xicon-640$$yRestricted
000843903 8564_ $$uhttps://juser.fz-juelich.de/record/843903/files/Kumar_2018_J._Inst._13_C01042.pdf?subformat=pdfa$$xpdfa$$yRestricted
000843903 8564_ $$uhttps://juser.fz-juelich.de/record/843903/files/Kumar%20et.al%20_2018_J._Inst._13_C01042_.pdf$$yOpenAccess
000843903 8564_ $$uhttps://juser.fz-juelich.de/record/843903/files/Kumar%20et.al%20_2018_J._Inst._13_C01042_.gif?subformat=icon$$xicon$$yOpenAccess
000843903 8564_ $$uhttps://juser.fz-juelich.de/record/843903/files/Kumar%20et.al%20_2018_J._Inst._13_C01042_.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000843903 8564_ $$uhttps://juser.fz-juelich.de/record/843903/files/Kumar%20et.al%20_2018_J._Inst._13_C01042_.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000843903 8564_ $$uhttps://juser.fz-juelich.de/record/843903/files/Kumar%20et.al%20_2018_J._Inst._13_C01042_.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000843903 909CO $$ooai:juser.fz-juelich.de:843903$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000843903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169828$$aForschungszentrum Jülich$$b0$$kFZJ
000843903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161528$$aForschungszentrum Jülich$$b1$$kFZJ
000843903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167475$$aForschungszentrum Jülich$$b2$$kFZJ
000843903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b3$$kFZJ
000843903 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000843903 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000843903 9141_ $$y2018
000843903 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000843903 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ INSTRUM : 2015
000843903 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843903 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843903 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000843903 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000843903 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000843903 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000843903 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000843903 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843903 920__ $$lyes
000843903 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000843903 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000843903 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x2
000843903 9801_ $$aFullTexts
000843903 980__ $$ajournal
000843903 980__ $$aVDB
000843903 980__ $$aUNRESTRICTED
000843903 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000843903 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000843903 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000843903 981__ $$aI:(DE-Juel1)PGI-4-20110106