000843906 001__ 843906
000843906 005__ 20210129232725.0
000843906 0247_ $$2doi$$a10.1016/j.colsurfb.2018.01.042
000843906 0247_ $$2ISSN$$a0927-7765
000843906 0247_ $$2ISSN$$a1873-4367
000843906 0247_ $$2Handle$$a2128/18842
000843906 0247_ $$2pmid$$apmid:29395385
000843906 0247_ $$2WOS$$aWOS:000443630200004
000843906 037__ $$aFZJ-2018-01433
000843906 041__ $$aEnglish
000843906 082__ $$a540
000843906 1001_ $$0P:(DE-HGF)0$$aMagnani, C.$$b0
000843906 245__ $$aHybrid vesicles from lipids and block copolymers: Phase behavior from the micro- to the nano-scale
000843906 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000843906 3367_ $$2DRIVER$$aarticle
000843906 3367_ $$2DataCite$$aOutput Types/Journal article
000843906 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553870713_25990
000843906 3367_ $$2BibTeX$$aARTICLE
000843906 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843906 3367_ $$00$$2EndNote$$aJournal Article
000843906 520__ $$aIn recent years, there has been a growing interest in the formation of copolymers-lipids hybrid self-assemblies, which allow combining and improving the main features of pure lipids-based and copolymer-based systems known for their potential applications in the biomedical field. In this contribution we investigate the self-assembly behavior of dipalmitoylphosphatidylcholine (DPPC) mixed with poly(butadiene-b-ethyleneoxide) (PBD-PEO), both at the micro- and at the nano-length scale.Epifluorescence microscopy and Laser Scanning Confocal microscopy are employed to characterize the morphology of micron-sized hybrid vesicles. The presence of fluid-like inhomogeneities in their membrane has been evidenced in all the investigated range of compositions. Furthermore, a microfluidic set-up characterizes the mechanical properties of the prepared assemblies by measuring their deformation upon flow: hybrids with low lipid content behave like pure polymer vesicles, whereas objects mainly composed of lipids show more variability from one vesicle to the other. Finally, the structure of the nanosized assemblies is characterized through a combination of Dynamic Light Scattering, Small Angle Neutron Scattering and Transmission Electron Microscopy. A vesicles-to-wormlike transition has been evidenced due to the intimate mixing of DPPC and PBD-PEO at the nanoscale. Combining experimental results at the micron and at the nanoscale improves the fundamental understanding on the phase behavior of copolymer-lipid hybrid assemblies, which is a necessary prerequisite to tailor efficient copolymer-lipid hybrid devices.
000843906 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000843906 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000843906 588__ $$aDataset connected to CrossRef
000843906 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000843906 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000843906 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000843906 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000843906 7001_ $$0P:(DE-HGF)0$$aMontis, C.$$b1
000843906 7001_ $$0P:(DE-Juel1)166565$$aMangiapia, G.$$b2
000843906 7001_ $$0P:(DE-HGF)0$$aMingotaud, A.-F.$$b3
000843906 7001_ $$0P:(DE-HGF)0$$aMingotaud, C.$$b4
000843906 7001_ $$0P:(DE-HGF)0$$aRoux, C.$$b5
000843906 7001_ $$0P:(DE-HGF)0$$aJoseph, P.$$b6
000843906 7001_ $$0P:(DE-HGF)0$$aBerti, D.$$b7
000843906 7001_ $$0P:(DE-HGF)0$$aLonetti, B.$$b8$$eCorresponding author
000843906 773__ $$0PERI:(DE-600)1500523-9$$a10.1016/j.colsurfb.2018.01.042$$gp. S092777651830050X$$p18-28$$tColloids and surfaces / B$$v168$$x0927-7765$$y2018
000843906 8564_ $$uhttps://juser.fz-juelich.de/record/843906/files/1-s2.0-S092777651830050X-main.pdf$$yRestricted
000843906 8564_ $$uhttps://juser.fz-juelich.de/record/843906/files/1-s2.0-S092777651830050X-main.gif?subformat=icon$$xicon$$yRestricted
000843906 8564_ $$uhttps://juser.fz-juelich.de/record/843906/files/1-s2.0-S092777651830050X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000843906 8564_ $$uhttps://juser.fz-juelich.de/record/843906/files/1-s2.0-S092777651830050X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000843906 8564_ $$uhttps://juser.fz-juelich.de/record/843906/files/1-s2.0-S092777651830050X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000843906 8564_ $$uhttps://juser.fz-juelich.de/record/843906/files/frielinghaus_hybrid_vesicles_manuscript_final.pdf$$yPublished on 2018-08-01. Available in OpenAccess from 2020-08-01.
000843906 8564_ $$uhttps://juser.fz-juelich.de/record/843906/files/frielinghaus_hybrid_vesicles_manuscript_final.gif?subformat=icon$$xicon$$yPublished on 2018-08-01. Available in OpenAccess from 2020-08-01.
000843906 8564_ $$uhttps://juser.fz-juelich.de/record/843906/files/frielinghaus_hybrid_vesicles_manuscript_final.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2018-08-01. Available in OpenAccess from 2020-08-01.
000843906 8564_ $$uhttps://juser.fz-juelich.de/record/843906/files/frielinghaus_hybrid_vesicles_manuscript_final.jpg?subformat=icon-180$$xicon-180$$yPublished on 2018-08-01. Available in OpenAccess from 2020-08-01.
000843906 8564_ $$uhttps://juser.fz-juelich.de/record/843906/files/frielinghaus_hybrid_vesicles_manuscript_final.jpg?subformat=icon-640$$xicon-640$$yPublished on 2018-08-01. Available in OpenAccess from 2020-08-01.
000843906 8564_ $$uhttps://juser.fz-juelich.de/record/843906/files/frielinghaus_hybrid_vesicles_manuscript_final.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-08-01. Available in OpenAccess from 2020-08-01.
000843906 909CO $$ooai:juser.fz-juelich.de:843906$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000843906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166565$$aForschungszentrum Jülich$$b2$$kFZJ
000843906 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000843906 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000843906 9141_ $$y2018
000843906 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000843906 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000843906 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000843906 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000843906 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000843906 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOLLOID SURFACE B : 2015
000843906 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843906 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000843906 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843906 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000843906 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000843906 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000843906 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000843906 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843906 920__ $$lyes
000843906 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000843906 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000843906 980__ $$ajournal
000843906 980__ $$aVDB
000843906 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000843906 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000843906 980__ $$aUNRESTRICTED
000843906 9801_ $$aFullTexts