000843933 001__ 843933
000843933 005__ 20210129232732.0
000843933 0247_ $$2doi$$a10.1002/aelm.201700243
000843933 0247_ $$2WOS$$aWOS:000424888600002
000843933 037__ $$aFZJ-2018-01457
000843933 082__ $$a621.3
000843933 1001_ $$00000-0003-0118-6321$$aSchönhals, Alexander$$b0$$eCorresponding author
000843933 245__ $$aRole of the Electrode Material on the RESET Limitation in Oxide ReRAM Devices
000843933 260__ $$aChichester$$bWiley$$c2018
000843933 3367_ $$2DRIVER$$aarticle
000843933 3367_ $$2DataCite$$aOutput Types/Journal article
000843933 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1519659538_3048
000843933 3367_ $$2BibTeX$$aARTICLE
000843933 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843933 3367_ $$00$$2EndNote$$aJournal Article
000843933 520__ $$aMetal-oxide-based bipolar resistive switching (BRS) redox-based resistive switching memory (ReRAM) shows many outstanding properties making it of interest as an emerging nonvolatile memory. However, it often suffers from a low ROFF/RON ratio, while a large ratio is desired to compensate for read margin loss due to the intrinsic variability of the ReRAM cells. Understanding of the physical processes responsible for limitations of the ROFF and RON in ReRAM cells is therefore of high importance. In this paper a study on the RESET process in BRS Ta2O5-based ReRAM cells is presented. The ROFF is found to be limited by a secondary volatile resistive switching mode that shows an opposite polarity compared to the main BRS mode. Based on results of switching kinetics measurements a physical model is proposed. It involves an oxygen exchange reaction at the metal-oxide/active electrode interface combined with a drift-diffusion induced migration of the resulting oxygen vacancy defects within the metal-oxide. Incorporation of a thin oxygen-blocking layer at the active interface allows for a suppression of the secondary switching mechanism. The improved RESET characteristic results in a strongly increased maximum ROFF. These results provide new insights into the role of the electrode material on the RESET process in BRS ReRAM cells.
000843933 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000843933 588__ $$aDataset connected to CrossRef
000843933 7001_ $$0P:(DE-HGF)0$$aRosário, Carlos M. M.$$b1
000843933 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b2
000843933 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b3
000843933 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b4
000843933 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk J.$$b5$$eCorresponding author
000843933 773__ $$0PERI:(DE-600)2810904-1$$a10.1002/aelm.201700243$$gVol. 4, no. 2, p. 1700243 -$$n2$$p1700243 -$$tAdvanced electronic materials$$v4$$x2199-160X$$y2018
000843933 8564_ $$uhttps://juser.fz-juelich.de/record/843933/files/Sch-nhals_et_al-2018-Advanced_Electronic_Materials.pdf$$yRestricted
000843933 8564_ $$uhttps://juser.fz-juelich.de/record/843933/files/Sch-nhals_et_al-2018-Advanced_Electronic_Materials.gif?subformat=icon$$xicon$$yRestricted
000843933 8564_ $$uhttps://juser.fz-juelich.de/record/843933/files/Sch-nhals_et_al-2018-Advanced_Electronic_Materials.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000843933 8564_ $$uhttps://juser.fz-juelich.de/record/843933/files/Sch-nhals_et_al-2018-Advanced_Electronic_Materials.jpg?subformat=icon-180$$xicon-180$$yRestricted
000843933 8564_ $$uhttps://juser.fz-juelich.de/record/843933/files/Sch-nhals_et_al-2018-Advanced_Electronic_Materials.jpg?subformat=icon-640$$xicon-640$$yRestricted
000843933 8564_ $$uhttps://juser.fz-juelich.de/record/843933/files/Sch-nhals_et_al-2018-Advanced_Electronic_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000843933 909CO $$ooai:juser.fz-juelich.de:843933$$pVDB
000843933 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b2$$kFZJ
000843933 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b3$$kFZJ
000843933 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b4$$kFZJ
000843933 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000843933 9141_ $$y2018
000843933 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ELECTRON MATER : 2015
000843933 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843933 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843933 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843933 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000843933 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000843933 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000843933 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000843933 980__ $$ajournal
000843933 980__ $$aVDB
000843933 980__ $$aI:(DE-Juel1)PGI-7-20110106
000843933 980__ $$aI:(DE-82)080009_20140620
000843933 980__ $$aUNRESTRICTED