001     843933
005     20210129232732.0
024 7 _ |a 10.1002/aelm.201700243
|2 doi
024 7 _ |a WOS:000424888600002
|2 WOS
037 _ _ |a FZJ-2018-01457
082 _ _ |a 621.3
100 1 _ |a Schönhals, Alexander
|0 0000-0003-0118-6321
|b 0
|e Corresponding author
245 _ _ |a Role of the Electrode Material on the RESET Limitation in Oxide ReRAM Devices
260 _ _ |a Chichester
|c 2018
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1519659538_3048
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Metal-oxide-based bipolar resistive switching (BRS) redox-based resistive switching memory (ReRAM) shows many outstanding properties making it of interest as an emerging nonvolatile memory. However, it often suffers from a low ROFF/RON ratio, while a large ratio is desired to compensate for read margin loss due to the intrinsic variability of the ReRAM cells. Understanding of the physical processes responsible for limitations of the ROFF and RON in ReRAM cells is therefore of high importance. In this paper a study on the RESET process in BRS Ta2O5-based ReRAM cells is presented. The ROFF is found to be limited by a secondary volatile resistive switching mode that shows an opposite polarity compared to the main BRS mode. Based on results of switching kinetics measurements a physical model is proposed. It involves an oxygen exchange reaction at the metal-oxide/active electrode interface combined with a drift-diffusion induced migration of the resulting oxygen vacancy defects within the metal-oxide. Incorporation of a thin oxygen-blocking layer at the active interface allows for a suppression of the secondary switching mechanism. The improved RESET characteristic results in a strongly increased maximum ROFF. These results provide new insights into the role of the electrode material on the RESET process in BRS ReRAM cells.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rosário, Carlos M. M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 2
700 1 _ |a Hoffmann-Eifert, Susanne
|0 P:(DE-Juel1)130717
|b 3
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 4
700 1 _ |a Wouters, Dirk J.
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1002/aelm.201700243
|g Vol. 4, no. 2, p. 1700243 -
|0 PERI:(DE-600)2810904-1
|n 2
|p 1700243 -
|t Advanced electronic materials
|v 4
|y 2018
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/843933/files/Sch-nhals_et_al-2018-Advanced_Electronic_Materials.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843933/files/Sch-nhals_et_al-2018-Advanced_Electronic_Materials.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843933/files/Sch-nhals_et_al-2018-Advanced_Electronic_Materials.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843933/files/Sch-nhals_et_al-2018-Advanced_Electronic_Materials.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843933/files/Sch-nhals_et_al-2018-Advanced_Electronic_Materials.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/843933/files/Sch-nhals_et_al-2018-Advanced_Electronic_Materials.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:843933
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130717
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21