000843947 001__ 843947
000843947 005__ 20210129232737.0
000843947 0247_ $$2doi$$a10.1088/2053-1591/aa67d6
000843947 0247_ $$2WOS$$aWOS:000398383000001
000843947 037__ $$aFZJ-2018-01470
000843947 082__ $$a620
000843947 1001_ $$0P:(DE-HGF)0$$aSun, Y. C.$$b0$$eCorresponding author
000843947 245__ $$aHoneycomb-lattice antiferromagnet Mn 2 V 2 O 7 : a temperature-dependent x-ray diffraction, neutron diffraction and ESR study
000843947 260__ $$aBristol$$bIOP Publ.$$c2017
000843947 3367_ $$2DRIVER$$aarticle
000843947 3367_ $$2DataCite$$aOutput Types/Journal article
000843947 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1519658205_3041
000843947 3367_ $$2BibTeX$$aARTICLE
000843947 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843947 3367_ $$00$$2EndNote$$aJournal Article
000843947 520__ $$aTemperature-dependent x-ray diffraction (XRD), neutron powder diffraction and high-field electron spin resonance (ESR) have been employed to study the structural and magnetic properties of distorted honeycomb lattice Mn2V2O7. The XRD data reveal that upon cooling Mn2V2O7 undergoes a martensitic-like β–α structural phase transition at ~270 K. Upon heating, however, the reversible α–β structural transition takes place at ~210 K, showing the first-order feature of the transition. The temperature range, where the two phases coexist, is well determined. With further decrease in temperature, a paramagnetic-to-antiferromagnetic (AFM) phase transition takes place at T N = ~23 K as indicated by ESR and neutron powder diffraction data. The ESR data demonstrate the AFM resonance modes below T N, which can be well understood by conventional AFM resonance theory with uniaxial anisotropy.
000843947 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000843947 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000843947 588__ $$aDataset connected to CrossRef
000843947 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000843947 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1
000843947 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000843947 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0
000843947 7001_ $$0P:(DE-HGF)0$$aOuyang, Z. W.$$b1
000843947 7001_ $$0P:(DE-Juel1)131047$$aXiao, Y.$$b2$$ufzj
000843947 7001_ $$0P:(DE-Juel1)130991$$aSu, Y.$$b3$$ufzj
000843947 7001_ $$0P:(DE-Juel1)159565$$aFeng, E.$$b4$$ufzj
000843947 7001_ $$0P:(DE-Juel1)130647$$aFu, Z.$$b5$$ufzj
000843947 7001_ $$0P:(DE-HGF)0$$aJin, W. T.$$b6
000843947 7001_ $$0P:(DE-HGF)0$$aZbiri, M.$$b7
000843947 7001_ $$0P:(DE-HGF)0$$aXia, Z. C.$$b8
000843947 7001_ $$0P:(DE-HGF)0$$aWang, J. F.$$b9
000843947 7001_ $$0P:(DE-HGF)0$$aRao, G. H.$$b10
000843947 773__ $$0PERI:(DE-600)2760382-9$$a10.1088/2053-1591/aa67d6$$gVol. 4, no. 4, p. 046101 -$$n4$$p046101 -$$tMaterials Research Express$$v4$$x2053-1591$$y2017
000843947 8564_ $$uhttps://juser.fz-juelich.de/record/843947/files/Sun_2017_Mater._Res._Express_4_046101.pdf$$yRestricted
000843947 8564_ $$uhttps://juser.fz-juelich.de/record/843947/files/Sun_2017_Mater._Res._Express_4_046101.gif?subformat=icon$$xicon$$yRestricted
000843947 8564_ $$uhttps://juser.fz-juelich.de/record/843947/files/Sun_2017_Mater._Res._Express_4_046101.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000843947 8564_ $$uhttps://juser.fz-juelich.de/record/843947/files/Sun_2017_Mater._Res._Express_4_046101.jpg?subformat=icon-180$$xicon-180$$yRestricted
000843947 8564_ $$uhttps://juser.fz-juelich.de/record/843947/files/Sun_2017_Mater._Res._Express_4_046101.jpg?subformat=icon-640$$xicon-640$$yRestricted
000843947 8564_ $$uhttps://juser.fz-juelich.de/record/843947/files/Sun_2017_Mater._Res._Express_4_046101.pdf?subformat=pdfa$$xpdfa$$yRestricted
000843947 909CO $$ooai:juser.fz-juelich.de:843947$$pVDB$$pVDB:MLZ
000843947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131047$$aForschungszentrum Jülich$$b2$$kFZJ
000843947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b3$$kFZJ
000843947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159565$$aForschungszentrum Jülich$$b4$$kFZJ
000843947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130647$$aForschungszentrum Jülich$$b5$$kFZJ
000843947 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000843947 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000843947 9141_ $$y2018
000843947 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER RES EXPRESS : 2015
000843947 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000843947 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843947 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843947 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843947 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000843947 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000843947 920__ $$lyes
000843947 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000843947 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000843947 980__ $$ajournal
000843947 980__ $$aVDB
000843947 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000843947 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000843947 980__ $$aUNRESTRICTED