000843979 001__ 843979
000843979 005__ 20240712112946.0
000843979 0247_ $$2doi$$a10.1021/acscatal.7b01447
000843979 0247_ $$2WOS$$aWOS:000410005700016
000843979 037__ $$aFZJ-2018-01497
000843979 082__ $$a540
000843979 1001_ $$0P:(DE-HGF)0$$aPizzutilo, Enrico$$b0$$eCorresponding author
000843979 245__ $$aGold–Palladium Bimetallic Catalyst Stability: Consequences for Hydrogen Peroxide Selectivity
000843979 260__ $$aWashington, DC$$bACS$$c2017
000843979 3367_ $$2DRIVER$$aarticle
000843979 3367_ $$2DataCite$$aOutput Types/Journal article
000843979 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1519741317_17495
000843979 3367_ $$2BibTeX$$aARTICLE
000843979 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843979 3367_ $$00$$2EndNote$$aJournal Article
000843979 520__ $$aDuring application, electrocatalysts are exposed to harsh electrochemical conditions, which can induce degradation. This work addresses the degradation of AuPd bimetallic catalysts used for the electrocatalytic production of hydrogen peroxide (H2O2) by the oxygen reduction reaction (ORR). Potential-dependent changes in the AuPd surface composition occur because the two metals have different dissolution onset potentials, resulting in catalyst dealloying. Using a scanning flow cell (SFC) with an inductively coupled plasma mass spectrometer (ICP-MS), simultaneous Pd and/or Au dissolution can be observed. Thereafter, three accelerated degradation protocols (ADPs), simulating different dissolution regimes, are employed to study the catalyst structure degradation on the nanoscale with identical location (IL) TEM. When only Pd or both Au and Pd dissolve, the composition changes rapidly and the surface becomes enriched with Au, as observed by cyclic voltammetry and elemental mapping. Such changes are mirrored by the evolution of electrocatalytic performances toward H2O2 production. Our experimental findings are finally summarized in a dissolution/structure/selectivity mechanism, providing a clear picture of the degradation of bimetallic catalyst used for H2O2 synthesis.
000843979 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000843979 588__ $$aDataset connected to CrossRef
000843979 7001_ $$0P:(DE-HGF)0$$aFreakley, Simon J.$$b1
000843979 7001_ $$0P:(DE-Juel1)168567$$aCherevko, Serhiy$$b2
000843979 7001_ $$0P:(DE-HGF)0$$aVenkatesan, Sriram$$b3
000843979 7001_ $$0P:(DE-HGF)0$$aHutchings, Graham J.$$b4
000843979 7001_ $$0P:(DE-HGF)0$$aLiebscher, Christian H.$$b5
000843979 7001_ $$0P:(DE-HGF)0$$aDehm, Gerhard$$b6
000843979 7001_ $$0P:(DE-Juel1)168125$$aMayrhofer, Karl$$b7$$eCorresponding author
000843979 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.7b01447$$gVol. 7, no. 9, p. 5699 - 5705$$n9$$p5699 - 5705$$tACS catalysis$$v7$$x2155-5435$$y2017
000843979 8564_ $$uhttps://juser.fz-juelich.de/record/843979/files/acscatal.7b01447.pdf$$yRestricted
000843979 8564_ $$uhttps://juser.fz-juelich.de/record/843979/files/acscatal.7b01447.gif?subformat=icon$$xicon$$yRestricted
000843979 8564_ $$uhttps://juser.fz-juelich.de/record/843979/files/acscatal.7b01447.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000843979 8564_ $$uhttps://juser.fz-juelich.de/record/843979/files/acscatal.7b01447.jpg?subformat=icon-180$$xicon-180$$yRestricted
000843979 8564_ $$uhttps://juser.fz-juelich.de/record/843979/files/acscatal.7b01447.jpg?subformat=icon-640$$xicon-640$$yRestricted
000843979 8564_ $$uhttps://juser.fz-juelich.de/record/843979/files/acscatal.7b01447.pdf?subformat=pdfa$$xpdfa$$yRestricted
000843979 909CO $$ooai:juser.fz-juelich.de:843979$$pVDB
000843979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168567$$aForschungszentrum Jülich$$b2$$kFZJ
000843979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168125$$aForschungszentrum Jülich$$b7$$kFZJ
000843979 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000843979 9141_ $$y2018
000843979 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2015
000843979 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000843979 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000843979 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000843979 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843979 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843979 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843979 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000843979 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS CATAL : 2015
000843979 920__ $$lyes
000843979 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000843979 980__ $$ajournal
000843979 980__ $$aVDB
000843979 980__ $$aI:(DE-Juel1)IEK-11-20140314
000843979 980__ $$aUNRESTRICTED
000843979 981__ $$aI:(DE-Juel1)IET-2-20140314