000844002 001__ 844002
000844002 005__ 20220930130141.0
000844002 0247_ $$2doi$$a10.1074/jbc.RA118.002149
000844002 0247_ $$2ISSN$$a0021-9258
000844002 0247_ $$2ISSN$$a1083-351X
000844002 0247_ $$2Handle$$a2128/18270
000844002 0247_ $$2pmid$$apmid:29462793
000844002 0247_ $$2WOS$$aWOS:000428848300023
000844002 037__ $$aFZJ-2018-01518
000844002 041__ $$aEnglish
000844002 082__ $$a570
000844002 1001_ $$0P:(DE-HGF)0$$aPagani, Guilia$$b0
000844002 245__ $$aThe human platelet antigen-1b variant of $\alpha$$_{IIb}$β$_{3}$ allosterically shifts the dynamic conformational equilibrium of this integrin toward the active state
000844002 260__ $$aBethesda, Md.$$bSoc.$$c2018
000844002 3367_ $$2DRIVER$$aarticle
000844002 3367_ $$2DataCite$$aOutput Types/Journal article
000844002 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524570641_25916
000844002 3367_ $$2BibTeX$$aARTICLE
000844002 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844002 3367_ $$00$$2EndNote$$aJournal Article
000844002 520__ $$aIntegrins are heterodimeric cell-adhesion receptors comprising α and β subunits. The human platelet antigen-1 (HPA-1) polymorphism in αIIbβ3 arises from a Leu→Pro exchange at residue 33 in the genu of the β3 subunit, resulting in Leu-33 (HPA-1a) or Pro-33 (HPA-1b) isoforms. Although clinical investigations have provided conflicting results, some studies have suggested that Pro-33 platelets exhibit increased thrombogenicity. Under flow-dynamic conditions, the Pro-33 variant displays prothrombotic properties, characterized by increased platelet adhesion, aggregate/thrombus formation, and outside-in signaling. However, the molecular events underlying this prothrombotic phenotype have remained elusive. As residue 33 is located > 80 Å away from extracellular binding sites or transmembrane domains, we hypothesized that the Leu→Pro exchange allosterically shifts the dynamic conformational equilibrium of αIIbβ3 toward an active state. Multiple microsecond-long, all-atom molecular dynamics simulations of the ectodomain of the Leu-33 and Pro-33 isoforms provided evidence that the Leu→Pro exchange weakens interdomain interactions at the genu and alters the structural dynamics of the integrin to a more unbent and splayed state. Using FRET analysis of fluorescent proteins fused with αIIbβ3 in transfected HEK293 cells, we found that the Pro-33 variant in its resting state displays a lower energy transfer than the Leu-33 isoform. This finding indicated a larger spatial separation of the cytoplasmic tails in the Pro-33 variant. Together, our results indicate that the Leu→Pro exchange allosterically shifts the dynamic conformational equilibrium of αIIbβ3 to a structural state closer to the active one, promoting the fully active state and fostering the prothrombotic phenotype of Pro-33 platelets.
000844002 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000844002 588__ $$aDataset connected to CrossRef
000844002 7001_ $$0P:(DE-HGF)0$$aPereira, Joana P. V.$$b1
000844002 7001_ $$0P:(DE-HGF)0$$aStoldt, Volker R.$$b2
000844002 7001_ $$0P:(DE-HGF)0$$aBeck, Andreas$$b3
000844002 7001_ $$0P:(DE-HGF)0$$aScharf, Rüdiger E.$$b4
000844002 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b5$$eCorresponding author$$ufzj
000844002 773__ $$0PERI:(DE-600)1474604-9$$a10.1074/jbc.RA118.002149$$gp. jbc.RA118.002149 -$$p4830-4844$$tThe journal of biological chemistry$$v293$$x0021-9258$$y2018
000844002 8564_ $$uhttps://juser.fz-juelich.de/record/844002/files/J.%20Biol.%20Chem.-2018-Pagani-4830-44-1.pdf$$yPublished on 2018-03-30. Available in OpenAccess from 2019-03-30.
000844002 8564_ $$uhttps://juser.fz-juelich.de/record/844002/files/J.%20Biol.%20Chem.-2018-Pagani-4830-44-1.gif?subformat=icon$$xicon$$yPublished on 2018-03-30. Available in OpenAccess from 2019-03-30.
000844002 8564_ $$uhttps://juser.fz-juelich.de/record/844002/files/J.%20Biol.%20Chem.-2018-Pagani-4830-44-1.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2018-03-30. Available in OpenAccess from 2019-03-30.
000844002 8564_ $$uhttps://juser.fz-juelich.de/record/844002/files/J.%20Biol.%20Chem.-2018-Pagani-4830-44-1.jpg?subformat=icon-180$$xicon-180$$yPublished on 2018-03-30. Available in OpenAccess from 2019-03-30.
000844002 8564_ $$uhttps://juser.fz-juelich.de/record/844002/files/J.%20Biol.%20Chem.-2018-Pagani-4830-44-1.jpg?subformat=icon-640$$xicon-640$$yPublished on 2018-03-30. Available in OpenAccess from 2019-03-30.
000844002 8564_ $$uhttps://juser.fz-juelich.de/record/844002/files/J.%20Biol.%20Chem.-2018-Pagani-4830-44-1.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-03-30. Available in OpenAccess from 2019-03-30.
000844002 8767_ $$d2018-02-28$$ePage charges$$jZahlung erfolgt$$lKK: Barbers$$pRA002149$$z15x USD 105,- = USD 1,575,- , Cadmus-Services: order no: 94220563.
000844002 909CO $$ooai:juser.fz-juelich.de:844002$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000844002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b5$$kFZJ
000844002 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000844002 9141_ $$y2018
000844002 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844002 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000844002 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844002 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000844002 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL CHEM : 2015
000844002 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844002 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844002 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844002 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844002 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844002 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844002 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000844002 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844002 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844002 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000844002 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x1
000844002 9801_ $$aAPC
000844002 9801_ $$aFullTexts
000844002 980__ $$ajournal
000844002 980__ $$aVDB
000844002 980__ $$aUNRESTRICTED
000844002 980__ $$aI:(DE-Juel1)JSC-20090406
000844002 980__ $$aI:(DE-Juel1)ICS-6-20110106
000844002 980__ $$aAPC
000844002 981__ $$aI:(DE-Juel1)IBI-7-20200312