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Abstract 

As part of biological research carried out on plant phenotyping within the Jülich Plant 

Phenotyping Centre, a modality to detect the positron emitting radionuclides has been setup. 

The investigation of transport of short-lived carbon isotope 11C within plants using 11CO2 as 

radiotracer fixed during the photosynthesis dark reactions is the idea behind this research. The 

Flow and distribution of 11C-labelled photo assimilates within a plant can then be imaged using 

the PET (Positron Emission Tomography) technology. To this end, a PET imaging system has 

been developed. This consists of scintillation detectors with scintillation crystals coupled to 

photodetectors. The radiation, which is emitted after the uptake of the radiotracer, causes light 

pulses within the scintillation crystals. This light is then converted into electrical signals by the 

photodetector. The “phenoPET” system is a PET scanner dedicated for plant research that 

employs digital SiPMs (Silicon Photo Multipliers) as photodetectors organised in 36 detector 

modules resulting in hit events based on the triggered photon counts fitted in data frames by a 

central FPGA based unit. 

Present study starts with developing a prototype that uses Ethernet FMC module (from 

Opsero Electronic Design) with four Gigabit Ethernet ports. Concerning illustration based on 

the pre framework design of data transfer from detector modules, data stream flows from each 

detector module (consisting of 4 tiles) to the FPGA board (Xilinx Kintex-7 FPGA Mini Module 

Plus (Avnet)) on LVDS lines. From the FPGA board to the readout computer, USB 3.0 (at 300 

MB/s (2.4 Gbps)) is used. For the connection from the readout computer to the storage system 

(located at air-conditioned place), 10 Gigabit Ethernet is used. Besides, our design is an add-

on to the module FPGA, data stream from module FPGA is sent to ZC706 evaluation board 

(Xilinx Zynq-7000 All Programmable SoC) when the Ethernet FMC module is mounted on 

FMC (FPGA Mezzanine Card) connector of the ZC706 board. The data is received by four 

ports over the UDP server application running on the Zynq Processing System. Data reduction 

technique like clustering on timestamps (when multiple data packets occur in an event of hits) 

is performed in a time window between 1 - 5 ns. Processed data is sent out from one of the 10 

Gigabit Ethernet ports on ZC706 after frame skipping technique being performed on every fifth 

frame. This study provides a measurement of Ethernet bandwidth utilization versus actual 

bandwidth from the stress tests performed on the datagrams. It provides information about the 

utilization of multi processors when the UDP application is running. 
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Introduction 

1. Introduction 

To encourage the development of non-invasive technologies to be applied for plant and 

breeding, the DPPN (German Plant Phenotyping Network) in collaboration with the 

Forschungszentrum Jülich, the Leibniz Institute of Plant Genetics and Crop Plant Research 

(IPK) in Gatersleben and Helmholtz Zentrum München (HMGU) is carrying out research. 

Scanner technology using PET, Positron Emission Tomography technique is such a non-

invasive technology. Improvement in plant and agricultural research is important for 

understanding and solving some difficulties of the future. Keeping in mind, the end goal to 

ensure the adequate sustenance supply for the world's fast-growing population, there is a need 

for higher crop yields and plants which are optimized for higher resistance to environmental 

stresses [1]. 

With a specific goal to confront these difficulties, the phenotype of a plant (i.e. the plant we 

really notice or observe – in contrast to the genotype, which is the heritable toolbox of the 

plant) is the consequence of the interaction between the genetic (hereditary) potential and the 

effect of environmental factors to which it is and was exposed. DPPN wants to gather 

quantitative data on the structural and physiological properties of plants and to apply this for 

primary plant research and breeding. For this reason, new and better techniques to decide, for 

instance, the size and shape of plants, their resistance to stress or the concentration of important 

metabolites are being developed [1]. 

 

Figure 1.1 Root growth is monitored in so called “Rhizotrones” in which large number of 

plants can be screened automatically [1]. 
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DPPN had setup frameworks to investigate plants under defined environmental conditions 

in the laboratory and in the field. For example,  

 Root structures will be investigated by magnetic resonance imaging. 

 Development rates and photosynthesis intensity and/or efficiency of plants are analysed 

in automated ways and with robots. 

 Water relations of crops are also determined – all for the general aim “to make plants 

better”. 

 

1.1  Methods and Technologies at the Jülich Plant Phenotyping Centre 

PET, Positron Emission Tomography is a scanner technology that can be implemented 

into phenotyping methods which truly provides insight into plant organs. Non-invasive analysis 

of subterranean structures and functions is possible with this and it has created a basis for in-

depth phenotyping. This technique allows to detect positron emitting radionuclides in an object. 

For this purpose, 11C, positron emitting radionuclide is induced into the plant in the form of 

11CO2 as radio tracer. During the photosynthetic dark reactions, 11CO2 is fixed and the products 

formed during these reactions are called as photo assimilates. These products formed are 

labelled with 11C radio isotope and are transported along the plant.  

The PET technology can be used to non-invasively identify the flow and distribution of 

these 11C-labelled photo assimilates by detecting the gamma radiations emitted by positron-

emitting radioisotope. An advantage of PET technique can be found from the following 

example. The photo assimilates formed (or the food synthesised by leaves during these 

photosynthesis reactions) are moved to all parts including the root tips embedded deep inside 

the soil. Transport of the carbon over longer distances proceeds through the conducting or 

vascular tissues (the xylem and the phloem) inside the plants. The cells in these conducting or 

vascular tissues are under high stress and sensitive to manipulate. Therefore, the transport 

inside them is hard to be accessed with invasive techniques. The PET technology, a non-

invasive form offers interesting chance to detect spatial and temporal distribution and 3D 

mapping of these radio traces in a plant. Two plant committed PET frameworks have been in 

operation at Institute of Bio and Geosciences (IBG-2, Plant Sciences) in Jülich 

Forschungszentrum, they are PlanTIS and phenoPET. 



 

3 

Introduction 

1.2  PlanTIS 

PlanTIS (Plant Tomographic Imaging System) is a custom-built instrument based on Clear 

PET technology. It is suited for small samples with a maximum field-of-view (FOV) of around 

65mm in diameter and a height of 100mm that has been built in 2006 and in operation since 

2008 [2]. 

 

 

Figure 1.2 PlanTIS [2] 

1.3  phenoPET 

phenoPET is also a custom built novel instrument that includes last generation digital 

photon counter (DPC) technology. The system will provide a field-of-view (FOV) of around 

180mm in diameter and 190mm in height and will have much higher detection sensitivity than 

PlanTIS.  

Therefore, phenoPET will contribute to the many plant phenotyping approaches at IBG-2 

but only for low throughput applications. The development of this system is a cooperation 

between three institutes at Forschungszentrum Juelich (ZEA-2: Electronic Systems, ZEA-1: 

Engineering and Technology and IBG-2: Plant Sciences) and Philips Digital Photon Counting, 

Aachen, Germany and supported by the Bundesministerium für Bildung und Forschung 

(BMBF) within the German-Plant-Phenotyping Network (DPPN) [3]. 
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1.4 Project description of pre-framework of phenoPET setup 

The development of PET detector for plant phenotyping by Forschungszentrum Jülich 

together with Philips Digital Photon Counting, Aachen has the scientific goal to study the 

carbon transport in plants. As discussed in 1.1, the PET technology can be used to non-

invasively identify the flow and distribution of these 11C-labelled photo assimilates by 

detecting the gamma radiations emitted by positron-emitting radioisotope. Gamma rays are 

emitted when electron-positron annihilation (collision) takes place in the decay of certain 

radioactive nuclei. This results in creation of gamma ray photon.  A ring of digital photon 

counters to detect the photon pairs recently developed by Philips is being used. For the 

prototype, for data concentration and for the processing of the coincidences, a Xilinx Kintex 

evaluation board was used. It is assumed that the necessary data rate from the FPGA to the 

acquisition computer is about 300 MByte/s. As data link a 10 Gigabit Ethernet link would be 

preferred, but the evaluation board contains a USB 3.0 interface already, therefore it has been 

chosen to use in order to reduce the development costs. (See Figure 1.4) Design overview of 

pre-framework of phenoPET setup. 

 

Figure 1.3 Pre-framework of phenoPET 

The PET framework in its last setup will comprise of three rings of photon detectors. The 

first version of the PET will have just a single ring, other rings will be added later. Twelve 

detector modules are present in each ring and each detector is connected to central FPGA board 

with standard HDMI cables. The data transfer from the detector module to the FPGA board 



 

1.4
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Figure 1.5 Design Architecture in the pre framework [5] 

Photon detectors and clustering concept 

11C, a short living isotope is chosen for the research study. It needs a scanner with high 

dynamic range as fast timing and high data rates are important so the Digital Silicon 

Photomultiplier DCP 3200-22-44 developed by Philips Digital Photon Counting, Aachen were 

chosen. There are 3200 cells (diodes) present in one pixel of the detector. This is a pure digital 

device as the number of broken-down cells are counted. One detector module comprises of 4 

tiles, each tile has 4*4 dies (See Figure 1.8) and each die has 2*2 pixels.  A timestamp (44 ps 

resolution) and the number of broken-down cells for each pixel are stored for an event of hit. 

When an event of photon hit occurs, all four pixels of the die are always triggered together. A 

total of 9216 pixels (3×12×4×16×4) are present in the complete PET with three rings [4]. 

 

 

Figure 1.6 Scintillation Detector and photoelectric concept [6] 
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Figure 1.7 Detector module with and without cap [5] 

 

 

Figure 1.8 Detector Tile [5]   Figure 1.9 Scintillator Matrix [5] 

 

Figure 1.10 Light sharing on Die Pixels [5] 

Each detector module accommodates four 8×8 pixel Digital Photon Counter devices DPC-

3200-22-44 connected to a PCB. A scintillator matrix with 16×16 individual LYSO 

scintillators is attached to each of this Digital Photon Counter device. (See Figure 1.89) Crystal 

size is 1.85×1.85×10 mm3. The matrices (Crystal Photonics) are composed with both reflective 

and transparent contact faces between the crystals in order to optimize crystal identification. 

The typical detector for detecting the gammas in a PET scanner is the scintillation detector. 

The scintillator converts the gamma into a light flash which is detected by a photodetector. 
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Figure 1.11 A cause for clustering scenario 

Ideally, the scintillator idea with the special crystal matrix should keep the light of a single 

crystal on one Die only (as shown in Figure 1.11) so that for each event of hit only one Die 

should trigger but because of the cross talk often more than one i.e., two or even more Dies 

trigger on the same event. This can be recognized by identifying the Dies that “group together” 

i.e. in other words which means “cluster together”. This scenario implies that, the timestamps 

of those events are close and can be in a clustering window of dtClus. All Dies within this 

clustering window form a cluster and are expected to belong to the same event.  

 

FPGA Board 

The Xilinx Kintex-7 FPGA Mini-Module Plus (Avnet) as central processing unit for data 

concentration and coincidence logic is chosen because of the limited development time 

Its features: 

Enough LVDS-IOs for 12 detector boards 

256 Mbyte SDRAM 

No 10 Gb-Ethernet 

Instead USB 3.0, fast enough for the expected data rate (300 Mbyte/s). 

 

The boards can be cascaded in a tree structure if more inputs become necessary. 10 Gigabit-

Ethernet was the preferred connection with the readout computer, but the Kintex board has 

only 1Gigabit-Ethernet which is not fast enough. Instead it has a USB 3.0 interface which can 

be easily used. Figure 1.12 shows the FPGA board with the adapter board for the HDMI cables. 

(The PCI e connector is not used.). The USB connection of the Kintex board is realised by a 

Cypress CYUSB3014 chip. This chip is in fact an ARM926EJ processor (32 bit, 200 MHz, 
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512 k Byte SRAM). The GPIOs are used for FIFO interface with a width of up to 32 bit and 

running at 100 MHz. This FIFO interface is connected to a DMA engine inside the FPGA 

which in turn uses the AXI framework to read data from or write data to the DDR3 memory 

[4]. 

A Micro Blaze Processor embedded in the FPGA is used for control and diagnostics. 

Because of the limited length of a USB-3 cable the readout computer should be located near 

the PET, but the storage system will be connected via 10 Gigabit Ethernet and be located in an 

air-conditioned place [4]. 

 

 

Figure 1.12 Concentrator Board with Kintex evaluation board and cable adapter [5] 
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2.  Motivation and Purpose  

This thesis work has started with an aim to co-assist the phenoPET project. As discussed in 

Figure 1.4, in the pre-design framework for data acquisition of phenoPET data, the data transfer 

from each detector module to the module FPGA and then to the Concentrator Base Board with 

Kintex FPGA in it uses LVDS, Low-voltage differential signalling. Next from FPGA board to 

the readout computer USB 3.0 is used.  

The data rates at each stage in the pre-design framework are as follows. In the first stage, 

the event data are transferred via 2 LVDS lines running at 100 MHz to the Module FPGA, 

giving a bandwidth of 200 Mbit/sec or 25 Mbyte/s.  

25 327 (=  ) = ~ 8    Tile frame data. (1) 

  

The data from each tile is transferred on frame base giving 8 Kbytes tile frame data.  

8 × 4 = 32    All tiles frame data. 

 

(2) 

25 × 4 = 100   Data rate for processing total data stream from 4-tiles. 

For 4 tiles (one module), a total of 32 Kbytes, all tiles frame data requires a data transfer 

rate of 100 Mbyte/s to the Module FPGA.  

Next, this data from each module (Module FPGA data) is transferred to the Concentrator 

Base Board via single LVDS line running at 400 MHz, giving a bandwidth of 50 Mbytes/s. 

50 × (=  ) = ~16  Module frame data. (3) 

 

50 × 36 = 1800  Data rate for processing total data stream from 36 

modules. 

 

(4) 

All data is transferred on frame base giving 16 Kbytes Module frame data. For 36 modules, 

a data transaction rate of 1800 Mbytes/s versus USB3.0 of 300 Mbytes/s has been used. 

×
= = 150  Data rate for processing clustered data stream from 

36 modules. 

 

(5) 



 

11 

 

If the data is clustered, in order to process the clustered data out considering a contrast factor 

of 4, 150 Mbytes/s versus USB3.0 of 300 Mbytes/s has been used. All these data rates and 

design flow can be seen in Figure 1.4.  

The purpose of the current thesis is to provide higher data rates or bandwidths during data 

acquisition and processing. Besides Concentrator Base Board that receives data on LVDS lines, 

ZC706 evaluation board with Ethernet FMC module on the FMC connector will receive the 

data from the module FPGAs over 1 Gigabit Ethernet port of  Ethernet FMC resulting in a data 

rate 1000 Mbps or 125 Mbytes/s  instead of 50 Mbytes/s  (see lines above (3)). The approach 

to send the data out to the readout computer on 10 Gigabit Ethernet port giving a bandwidth of 

1250 Mbytes/s which is close to 1800 Mbytes/s (see lines below (4)) instead of using USB 3.0 

with a bandwidth of 300 Mbytes/s is much faster. This ratio gets even better with preprocessed 

clustered data, which would result in 150 Mbytes/s being send with 1250 Mbytes/s instead of 

300 Mbytes/s.  
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3. Requirement and System Analysis 

Based on the motivation and purpose discussed in previous chapter, following requirements 

are chosen and an analysis is drawn at system level for higher data rates. These Requirements 

are categorized into hardware and software which are going to be discussed in the following 

chapter. This analysis is performed at system level in both hardware and software point of 

views. Table 1 presents the requirements and respective hardware interfaces chosen. 

Requirement  Hardware interfaces chosen 

4 Gigabit per second data rate for data 

acquisition 

Ethernet FMC module with four 1 Gigabit 

Ethernet ports 

10 Gigabit per second data rate for sending 

data out 

Board with 10 Gigabit Ethernet support 

(SFP module) 

A board with FMC connectors, FPGA and 

Processor for data acquisition and 

processing 

Xilinx Evaluation Board with Zynq 

Processing System (ZC706 and ZCU102 are 

chosen) 

Designing of hardware setup and 

development of software application 

running on Procesor to handle the data. 

Xilinx Vivado Design Suite and PetaLinux 

tools 

Table 1 Requirement specification and hardware chosen 

 

 Figure 3.1 System Analysis 
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3.1  Hardware requirements 

Ethernet FMC 

Opsero Electronic Design Inc. a design consultancy specialized in FPGA technology has 

designed a product called Ethernet FMC. The main component in this project is Ethernet FMC 

module. This is a quad Gigabit Ethernet mezzanine card for FPGA as shown in the Figure 3.2. 

A mezzanine card is a smaller form of the more familiar Peripheral Component Interface (PCI) 

or Industry Standard Architecture (ISA) card.  

 

Figure 3.2 Ethernet FMC module or adapter for FPGA 

If Ethernet FMC is being used, the Ethernet MAC is inside the FPGA and the PHY is the 

Marvell 88E1510. The Marvell 88E510 PHY is the default configuration of the Ethernet FMC 

with auto negotiation for 10 Mbps, 100 Mbps and 1 Gbps capabilities and also the MDI 

automatic crossover features are supported. 
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ZedBoard 

ZedBoard is an affordable evaluation and development board for the Xilinx Zynq 7000 all 

programmable SoC (APSoC). ZedBoard contains Xilinx XC7Z020-1CSG484CES Extensible 

Processing Platform (EPP). It has a dual Cortex-A9 Processing System (PS) with 85,000 

Series-7 Programmable Logic (PL) cells. It is based on the Xilinx Zynq-7000 Extensible 

Processing Platform which can be useful for broad use in many applications. Some of the 

features like 512 MB of DDR3 along with 256 MB of QSPI Flash, 10/100/1Gigabit Ethernet 

interface, one LPC (Low Pin Count) FMC (FPGA Mezzanine Card) interface and an SD card 

interface made us to have ZedBoard to be chosen development board in the current project [7]. 

But concerning the compulsion for one 10 Gigabit Ethernet interface to send the clustered data 

out and also for higher DDR3 specification for higher data processing to take place, Zynq-7000 

All Programmable SoC ZC706 has been chosen. But in the beginning stages of the project, the 

data acquisition has been performed on ZedBoard on the four Ethernet ports of Ethernet FMC 

connected to the LPC FMC interface. 

 

Figure 3.3 Functional overlay of ZedBoard [8] 
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ZC706 

For developing and evaluating designs targeting the Zynq-7000 XC7Z045-2FFG900C AP 

SoC, the ZC706 evaluation board is used. The XC7Z045 AP SoC has an integrated processing 

system (PS) and programmable logic (PL) on a single piece as shown in Figure 3.6.  

 

Figure 3.4 Functional overlay of ZC706 evaluation board [9] 

Various interfaces for System on Chip with Zynq PS and Kintex PL present on ZC706 

evaluation board can be seen in the Figure 3.5.  

 

Figure 3.5 ZC706 Evaluation board block diagram [9] 
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A high-level block diagram connecting Programmable Logic (PL) and Processing System 

(PS) consisting of memory interfaces, Application Processor Unit and IO peripherals on AXI 

interface is shown in Figure 3.6. 

 

Figure 3.6 High Level Block Diagram [9] 

Two ARM Cortex – A9 MP core application processors, AMBA interconnect, internal 

memories, external memory interfaces and peripherals like USB, Ethernet, SPI, SD/SDIO, I2C, 

CAN, UART and GPIO are integrated inside the Processing System. The PS runs 

independently of the PL and boots at power-up or reset. A system level block diagram with 

required components in PS and PL of Zynq 7000 AP SoC is shown in Figure 3.7 [9]. 

 

Figure 3.7 Zynq 7000 Block Diagram [9] 
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The actual hardware set up for data acquisition and processing with Ethernet FMC is shown 

in Figure 3.8. 

 

Figure 3.8 Hardware Setup on ZC706 Board in the project 

Software to be used 

 Xilinx Vivado Design Suite for generating hardware description file of the system 

under design. 

 Xilinx PetaLinux tools for configuring the embedded Linux platform on the ZC706 and 

implementing the above tasks on the hardware platform. 
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4. Validation Strategy 

Since the project has its purpose for data acquisition and processing at higher data rates, it 

can be validated in following ways before proceeding to implementation for UDP and 

clustering. 

4.1  Validation Strategy for Data Acquisition 

PhenoPET detector has tile frame data of size 8 Kbytes and a total of 32 Kbytes of data from 

each detector module is transmitted at 1 Gigabit/s rate to the Processing System of Zynq on 

UDP. A fastest and most simple way for transmitting data to the receiver is possible by UDP. 

There is no chance for interference in the stream of data under transmission. This prompts an 

approach for an application to get as close in order to meet the real-time constraints as possible. 

The four ports receive data from the module FPGA. Since UDP is connectionless, therefore the 

current system can be validated on UDP data packages of four modules on four Ethernet ports 

in real time to validate data processing on FPGA as shown in the Figure 4.2. 

 

Figure 4.1 Networking framework based on simplified OSI for the DAQ 

 

Figure 4.2 Flow of data from physical to transport layer in current project 

In digital communication, a message that is sent from one end point to another without any 

preliminary arrangement is described as “connectionless”. Without first guaranteeing that the 

recipient at another end is accessible or ready to receive the data, the device at one end of the 

communication transmits data to another end. Data is to be resent several times if there are 
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problems with the transmission because the device at one end sending the data simply sends 

data addressed to the intended recipient. The User Datagram Protocol (UDP) and Internet 

Protocol (IP) are two such connectionless protocols. 

Delivery of all packets is not assured so the connectionless service is an unreliable one. The 

connectionless service is also called a “best-effort service”, though all attempts to deliver a 

packet will be made, the unreliability is may be due to hardware faults or exhausted resources 

and packets may be quietly dropped, duplicated or delayed and may arrive in an improper order. 

TCP provides a reliable connection and majority of current Internet applications utilize this 

protocol. In addition to the features like error checking and correcting, TCP is also in charge 

of controlling the speed at which the data is sent. One of the qualities of TCP is congestion 

control in the network where transmission speed will be backed off when congestion occurs. 

Thus, network is safeguarded from congestion collapse. 

TCP would be a preferred protocol to be used because of its features like congestion control. 

Because of the fact that TCP is a reliable service, delays are introduced at whatever point a bit 

error or packet loss takes place. Delay is caused because of the retransmission of the broken 

packet, along with any successive packets that are already been sent can be a large source of 

jitter. Combined, jitter is raised to an unacceptable level rendering TCP unusable for real-time 

services. Our current project has the advantage of not requiring a completely reliable transport 

level. A click or a minor break would only be introduced into the output due to loss of a packet 

or there is not much effect while further processing the packets. 

For these reasons, UDP is being used for the data transmission in our project. UDP is a thin 

layer on top of IP that inherits all of the properties of IP that TCP attempts to hide. UDP is 

therefore also a packet based, connectionless, best-effort service. Providing any necessary error 

checking is up to the application by splitting data into packets. 

Since UDP is chosen way for data acquisition of phenoPET detector data on the Processing 

System of Zynq, iPerf3 can be used to validate the data acquisition over UDP at different 

bandwidths by running iPerf3 server on the Zynq PS and iPerf3 client that send user datagrams 

to the server in specific intervals of time.  

In 
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4.2  Validation Strategy for Data Processing 

Our current project aims for the clustering technique to be performed while processing the 

data. 

As discussed Seite 4, when an event of photon hit takes place, only one die has to be 

triggered for the light of a single crystal but more than one i.e., two or even more Dies trigger 

on the same hit event. Then the time stamps of those events are close and are in a window 

which are expected to belong to the same event. So, Clustering technique aggregates all the 

data that (presumably) belongs to an event. That is, that the time stamps are controlled. As long 

as the difference in the time stamps of successive data from different dies is less than e.g. 5 ns, 

they are assumed to originate from the same event. The pixel values of all these then, together 

with the earliest time mark, form the data packet for this event.  

 

Figure 4.3 Example for Cluster 

Clustering is the first thing to do with the data processing in the FPGA. In doing so, all 

relevant pixels together with the first time mark are tied together into a data packet.  

The clustered data can be validated from MATLAB runs performed over the phenoPET 

detector data frames. These results can be compared to the results obtained when the actual 

algorithm runs on the Zynq PS. (Compare results in clustered data output results in 11.3 and 

11.4 in Appendix) 
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5. System Concept 

Based on the requirement and system analysis discussed in chapter 3, in the current project, 

the target evaluation board, ZC706 has been used and the Ethernet FMC module has been 

mounted on the LPC FMC of the board for data acquisition and data processing. This board 

receives data at a speed of 1 Gigabit/s or 125 MBytes/s on each of the four Ethernet ports. Data 

is received on the UDP application running on the processing system. Algorithm to identify 

the clustered events based on the closeness of timestamps in a cluster window is performed on 

the data acquired on the Zynq Processing System (C programming). And the clustered data is 

sent out to the readout computer on one of the Ethernet ports at a speed of 10 Gigabit/s or 1250 

MBytes/s. 

 

Tasks overview 

 1st step: To configure the ZC706 evaluation board for network interfaces for the four 

Ethernet ports of Ethernet FMC module. 

 2nd step: Boot Linux on the processing system of the board and communicate to the four 

ports from a host PC on the network interfaces. 

 3rd step: Send data in UDP packets to the four ports when UDP application program is 

running on the processing system. 

 4th step: Run the algorithm on the data from each port in order to identify clusters in 

cluster window based on time stamp after the data being extracted and send the reduced 

data out after performing the algorithm at 10 Gigabits/s on another Ethernet port. 

A host PC acts like a medium only, to configure the board and setup the network interfaces. 

In real-time the data is directly sent from the module FPGA to the four Ethernet ports of the 

Ethernet FMC module. Stress tests are performed on all four Ethernet ports and percentage of 

packet loss at different bandwidths is calculated. Processor utilization for each task is also 

known. 

Since currently developed prototype uses Ethernet FMC module (from Opsero electronic 

design) with four Ethernet ports. This Ethernet FMC module is mounted on ZC706 evaluation 

board via an FMC connector on the board. This design is added to the module FPGA in the 

previous prototype for data acquisition in phenoPET project as discussed before (under 1.4 and 

see Figure 1.4). The current design flow including the data rates is shown below as Figure 5.1. 
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The incoming data streams from four module FPGAs now go to UDP server application 

running on the Zynq processing system on the ZC706 evaluation board through the four ports 

of Ethernet FMC module that is mounted on FMC connector. Data reduction technique called 

clustering on timestamps (when multiple data packets occur in an event of hits) is performed 

in a time window of 5 ns. Processed data will be sent out on the 10 Gigabit Ethernet port on 

ZC706 after frame skipping technique being performed on every fifth frame. 

An idea or the concept before proceeding for implementation on ZC706 board is shown on 

a Zynq AP SoC (here on ZedBoard) in Figure 5.2. In implementation point of view, the physical 

layers implemented by Ethernet FMC are connected through RGMII interface to the MAC 

layer implemented by IP cores on the FPGA in Vivado design suite and Linux OS is booted 

that runs on the ARM processor that implements networking support is required. 

 

 

Figure 5.2 System concept at hardware level on an example set up with ZedBoard [10] 
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6. System Implementation 

Complete system implementation can be split into two categories, first is design phase of 

hardware in Xilinx Vivado Design Suite and the second is software development using Xilinx 

PetaLinux tools.  

6.1  Hardware Design in Xilinx Vivado Design Suite 

The Figure 6.1 is a pictorial illustration for the actual hardware design done in Xilinx 

Vivado Design Suite. It is portrayed below for an easy reference in this section as many of the 

concepts are to be explained here.  

 

Figure 6.1 System Design Overview 

The Vivado Integrated Design Environment (IDE) has an IP-centric design flow in which 

one can add IP modules to the design from different design sources. A GUI called IP Integrator 

helps in faster pin connection to IP enabled by an AXI based common user interface. This will 

greatly decrease the time and efforts for the design. There is also a feature called IP subsystem 

for multiple IP into one.  

In the implementation point of view, the main aim of our project can be described based on 

Figure 6.1. There is IP cores depicting the actual hardware on the PL side and this hardware 

receives the detector module data of phenoPET when connected to the Ethernet. This data is 

copied over the AXI interfaces to the DRAM memory and the software we run here will process 

the data on the ARM host and send the processed or clustered data out on 10 Gigabit port 

depicted with another IP core on the PL side. 
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6.2  Implementation of PHYs of Ethernet FMC in Vivado 

As shown in the Figure 6.1, the design implementation starts with connecting PHYs of 

Ethernet FMC and MACs of Ethernet Subsystem IP core. During implementation, there are 

some corrections or skews to be considered in the application data paths. The Ethernet PHY 

and the Ethernet MAC have a physical connection called RGMII interface between them. A 

dual data rate (DDR) interface called RGMII interface that consists of a transmit path from 

FPGA to PHY and a receive path from PHY to FPGA interfaces is present between them. 

Independent clocks, 4 data signals and a control signal are present in both the paths.  

The data and clock are output simultaneously in the RGMII standard specification (i.e. 

without any skew on the clock), as shown in Figure 6.2.  

 

Figure 6.2 Clock skew stages in RGMII interface [11] 

But if the data signals are to be properly sampled at the receiver side, the delay has to be 

added to the clock signal, either by the PCB traces or by the receiver itself in the RGMII 

standard. The clock and data signals after delay in the clock has been added is shown in the 

Figure 6.4. 

 

Figure 6.3 RGMII Interface without clock skew [11] 



[11]

Figure 6.2

set_property CLKOUT1_PHASE 0 [get_cells 

design_1_i/axi_ethernet_0/U0/eth_mac/U0/tri_mode_ethernet_mac_supp

ort_clocking_i/mmcm_adv_inst]
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The RGMII TX clock delay is performed in the FPGA fabric by default for AXI Ethernet 

Subsystem. It uses an MMCM to produce a clock that is phase shifted by 90 degrees with 

respect to the “gtx_clk”. Mixed Mode Clock Manager (MMCM) produces a clock that is phase 

shifted by 90 degrees with respect to the “gtx_clk”. To remove the delay the simple way is to 

change the configuration of the MMCM to produce a phase shift of 0 rather than 90 using the 

above said command Code snippet 1. 

If multiple AXI Ethernet Subsystem IPs are being used, only one of these IPs will have the 

shared logic (MMCM) and the phase shifted clock is input to the others. In this case only one 

MMCM has to be reconfigured whereas if the shared logic (MMCM) is included in more than 

one AXI Ethernet Subsystem IP, then the above command is applied for each of the MMCMs. 

Skew on the PCB traces: 

The clock and data traces of Ethernet FMC are length matched between the FMC connector 

and the PHYs, hence, the PCB traces add no delay.  

Skew in the PHY: 

There are two internal delays in the Marvell 88E1510 Ethernet PHY’s design, which can be 

enabled to add skew to the incoming RGMII TX clock and the outgoing RGMII RX clock 

independently. The delay is always 1.9 ns despite of the link speed. These delays are enabled 

or disabled by writing to a particular register in the PHY and depends on whether it is Linux 

or a stand-alone application which will be discussed in 6.13. 

 We are using AXI Ethernet Subsystem IP cores in the current design which will be 

discussed in 6.3. The RGMII TX clock delay is performed in the FPGA fabric by default for 

AXI Ethernet Subsystem. Our actual design has four AXI 1G/2.5Gigabit Ethernet Subsystem 

IP cores for four Ethernet ports of Ethernet FMC module. An AXI4-Lite bus interface is 

provided in the subsystem for a simple connection to the processor core in order to access the 

registers. For moving transmit and receive Ethernet data to and from the subsystem 32-bit 

AXI4-Stream buses are provided. AXI Direct Memory Access (DMA) IP core, AXI4-Stream 

Data FIFO or any other custom logic are to be used with the above bus. In our design, four AXI 

DMA IP cores have been used with respect to four AXI 1G/2.5Gigabit Ethernet Subsystem IP 

cores as already discussed in previous sections.   
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6.3  AXI 1G/2.5G Ethernet Subsystem IP 

An Ethernet PHY device is connected to the PHY side of the subsystem which performs the 

BASE-T standard at 1 Gb/s, 100 Mb/s and 10 Mb/s speeds. AXI 1G/2.5Gigabit Ethernet 

subsystem IP core has a benefit to use 1000BASE-X, MII, GMII, SGMII, RGMII interfaces to 

connect a MAC (media access control) to a PHY (physical-side interface) chip. 

In our current design, RGMII, the Reduced Gigabit Media Independent Interface (RGMII) 

is being used which has a benefit of Double Data Rate (transfer data on both rising and falling 

edges of the clock signal) and provides support for Ethernet operation at 10 Mb/s, 100 Mb/s 

and 1 Gb/s speeds. 

Ethernet MAC functionality related features are displayed under MAC features tab of 

Ethernet Subsystem as shown in the Figure 6.5. Two important parameters are Tx Checksum 

offload and Rx Checksum offload. In general, data integrity can be sustained by calculating 

and verifying checksum over the TCP and UDP frame data. The protocol stack software 

handles the checksum functionality that uses sufficiently more processor power for large 

frames at higher Ethernet data rates. An alternative idea is to offload some or whole transmit 

checksum generation and receive checksum verification in hardware. By using the TX 

Checksum offload and RX Checksum offload parameters, this can be achieved and it results in 

higher Ethernet performance by using more FPGA resources while freeing up processor use 

for other functions. 

In our design, we have full checksum offload of Tx and Rx enabled on the hardware and a 

Tx memory size and Rx memory size of maximum value i.e. 32K is set as shown in Figure 

6.5. 

 

Figure 6.5 AXI 1 G/2.5 Gigabit Ethernet Subsystem in the current design 
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6.4  AXI Bus 

A data bus called AXI is part of ARM AMBA, a family of microcontroller buses called an 

“Advanced eXtensible Interface”.  

Three types of AXI4 interfaces are defined as follows 

 AXI4 for high performance memory-mapped requirements. 

 AXI4-Lite for simple and low-throughput memory-mapped communication (to and 

from status and control registers). 

 AXI4-Stream for streaming data at high speed. 

6.5  Gigabit Ethernet subsystems and DMA engine 

An in-built dual Gigabit Ethernet controller that supports 10/100/1000 Mb/s EMAC 

configurations is present in the Zynq- 7000 AP SoC. An additional soft AXI EMAC controllers 

can also be configured in Programmable Logic (PL) subsystem of the Zynq-7000 AP SoC if 

more than two Gigabit Ethernet Controllers is the requirement. An example block diagram of 

the Zynq-7000 AP SoC with GEMACs is shown in the following Figure 6.6. 

 

 

Figure 6.6  Gigabit Ethernet Design block diagram using Zynq-7000 AP SoC [12] 
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A brief description of various PS- and PL-based Ethernet implementations is given below. 

Among these 

 PS-GEM0 is connected to the Marvell PHY through the reduced Gigabit media 

independent interface (RGMII) via MIO pins, which is the default setup for the ZC706 

board. 

 PS Ethernet (GEM1) that is connected to a 1000BASE-X physical interface (PHY) in 

PL through an EMIO interface. 

 Ethernet implementation as soft logic in PL (MAC) using “AXI 1G/2.5Gigabit Ethernet 

subsystem” IP core and connected to the 1000BASE-X physical interface (PHY) and 

the GTH transceiver through RGMII (in our current design). Where 1000BASE-X PHY 

and the GTH transceiver are a part of the AXI Ethernet core. 

On the board, 1000 BASE-X PHY is shared by PS-GEM1 and the PL Ethernet and only one 

can be used at a time. PS GEM0, PS GEM1 supports max frame size 1522 bytes. A jumbo 

frame size up to 16k can be supported for AXI EMAC in PL which is the main difference 

between PS and PL EMACs.  

In the current project design, Ethernet implementation as soft logic in PL is chosen and four 

tri-mode (10/100/1000 Mb/s) Ethernet MACs are implemented using four AXI Ethernet 

subsystem IP cores as soft logics in PL and the AXI Ethernet subsystem IP core has been 

discussed in 6.3. 

6.6  Application Data path on ZC706 

In this section, as an example, Ethernet data movement in the Processing System of Zynq 

AP SoC is described before proceeding to describe Ethernet data movement in our actual 

design with four ports Ethernet implementation in Programmable Logic under the same section. 
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Figure 6.7 Ethernet Data movement in Zynq-7000 AP SoC [12] 

On the Zynq Processing System, the Gigabit Ethernet MAC Controller has three main blocks. 

1. MAC Controller 

2. FIFO (Packet Buffer) and  

3. Ethernet DMA Controller. 

Receive Path 

The Ethernet DMA controller is connected to the FIFO to give a scatter-gather capability 

for packet data storage in a Zynq processing system. Separate transmit and receive lists of 

buffer descriptors are used by the Ethernet DMA with every descriptor containing a buffer area 

in memory. The Ethernet DMA Controller writes the data received to pre-allocated buffer 

descriptor in system memory. Receive buffer queue has the list of these above said buffer 

descriptor entries. The Ethernet DMA has the Receive-buffer Queue Pointer register that points 

to this data structure on initialization. The Ethernet DMA uses the Receive-buffer Queue 

Pointer continuously and sequentially and copies the Ethernet packet received in the Ethernet 

FIFO to Memory address specified in the receive buffer queue. 

DDR or OCM will contain these Rx Ring buffers and Tx Ring buffers, the speed at which 

the instructions execute for packet processing will also improve the overall performance. Thus, 

when an Ethernet Packet is received by the MAC, the address in the RX Buffer descriptor is 

used by the Ethernet DMA to push the packet buffered in the FIFO (Packet Buffer) on Ethernet 

interface to DDR3 memory, via the central interconnects. 
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Data Receive Path 

ETH0  ETH0 DMA (32-bit)  Central Interconnect  DDR3 Memory Controller (64-bit AXI) 

Transmit Path 

The address in the TX Buffer descriptor is used by the Ethernet DMA in case of transmit to 

pull the data from DDR3 Memory, through the central interconnect and finally to the ETH0 

Interface. 

Data Transmit path 

DDR3 Memory Controller (64-bit AXI)  Central Interconnect  ETH0 DMA (32-bit)  ETH0 

In the current project, the data receive path and data transmit path are as follows unlike the 

above paths because a four port Ethernet FMC module is used. 

 

 

Figure 6.8 Ethernet Data movement in Zynq-7000 AP SoC with 4-port Ethernet FMC module 

Data Receive Path (when Ethernet FMC module is used) 

AXI _ETH[X]  AXI_ETH[X]_DMA (32-bit)  AXI Interconnect / AXI SmartConnect  DDR3 Memory Controller (64-bit AXI). 

where [X] = 0, 1, 2, 3 

Data Transmit Path (when Ethernet FMC module is used) 

DDR3 Memory Controller (64-bit AXI)  AXI Interconnect / AXI SmartConnect  AXI_ETH[X]_DMA (32-bit)  AXI_ETH[X]. 

where [X] = 0, 1, 2, 3 
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6.7  DMA Engine 

The DMA (Direct Memory Access) engine is an important part for maximizing performance 

in FPGA designs and helps to transfer data from one part of the system to another. As an 

example it is used to transfer data from one part of the memory to another. Also, the DMA 

engine is used to transfer data from any data producer like an ADC to a memory or from a 

memory to any data consumer like DAC. Previously, the processor had handled all data 

transfers between devices and memories. Due to increase in complexity and speed of the 

systems DMA was invented to free up the processor in dealing with data transfers from one 

place to another which removed a bottleneck in efficiency. The data throughput is typically 

very high for the processor to deal with so a DMA has an important role in high performance 

digital and FPGA systems. In the current design, the AXI Direct Memory Access (AXI DMA) 

IP provides high-bandwidth direct memory access between memory and AXI4-Stream-type 

target peripherals; in our case the target peripherals are AXI 1G/2.5G Ethernet Subsystem IP 

cores. 

6.8 AXI DMA and scatter-gather mode 

An overview of Scatter Gather, operation of Scatter Gather DMA and AXI DMA in scatter 

gather mode during the data acquisition and data transfers from PL to the DRAM in PS and 

vice versa are discussed in this section. The following IP core in the current design play an 

important role for data transactions to take place to and from the memory and AXI stream 

generator in our case AXI 1 G/2.5 G is the source for input and output stream of data in the 

implemented design. 

6.9 Meaning of Scatter-Gather  

If we have a data stream, which can be anything like a stream of Ethernet packets, a stream 

of packets over USB, a stream of packets over a PCI Express link or a custom interface 

connected to an A2D i.e. let data is entering the system and this data has to be processed and 

stored somewhere in the system. If the data has to be stored in the DRAM memory of our 

system, a set of blocks are allocated on the DRAM memory and the incoming data has to be 

arranged in a set of blocks as shown in the Figure 6.9. These blocks are not necessary to be 

one after another but they can be distributed across the physical memory. A stream of data 

enters the system and it scatters between different locations or physical addresses in the system. 
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The destination of all these packets may not be necessarily the DRAM but each of the packets 

may go to the different locations in the system. In the same manner, in the reverse direction 

suppose that we have different amounts of data and each amount is located at different physical 

addresses in the system memory and a stream of data is to be created out of these amounts of 

data at different locations. So, the DMA engine or the DRAM controller is responsible for 

reading and gathering all these amounts of data and putting them into a unified or unique stream 

of data. In our case these are Ethernet packets containing the data from the detector modules 

of the phenoPET project. 

 

Figure 6.9  Example for scattering and gathering of data stream 

6.10  Operation of Scatter-Gather DMA: Register mode 

Previously the Scatter-Gather (SG) has been explained, here the operation will be explained. 

For each packet from the data stream entering the DMA engine CPU will define the transfer 

task which specifies where the packet should go. The DMA engine receives the transfer task 

and performs the transfer and as soon as it finishes the transfer, an interrupt is generated by the 

DMA engine to the CPU and the CPU defines and sends next transfer task to the DMA engine. 

In the reverse direction, same thing is true. There is some data stored in the physical address 

range of the system and a set of packets are to be produced and for each read and generation of 

the packets, the CPU defines from which address of the system the packet should be read and 

how much amount of data the DMA engine should read. As soon as the DMA engine finishes 

one transfer task the CPU defines a new transfer task. The CPU will receive an interrupt for 
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every transfer task and it should respond to the interrupt giving the next transfer task. The better 

way is explained in the next section. 

 

Figure 6.10 Operation of DMA engine and buffer descriptors in register mode 

6.11  Operation of DMA: SG Mode 

The CPU defines all of the required transfer tasks at one point and it copies all of these 

transfer tasks into memory. When the DMA engine receives the data or when it wants to read 

the data from the physical addresses to produce the output stream, the DMA engine will first 

read the transfer tasks one by one and perform data transfer according to the definitions 

described in transfer tasks. The DMA engine interrupts the CPU only when all of the transfer 

tasks are finished. Thus, CPU instructs the DMA engine to begin the operation and provide 

address of the transfer tasks in the block memory and tells the DMA engine the ending address 

of final transfer task in the block memory. The CPU for the next set of data transactions will 

define a new set of transfer tasks. Each transfer task is called as a descriptor. Each descriptor 

is an indicator of an amount of data to be transferred from a source to the destination. 
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Figure 6.11 Operation of DMA engine and buffer descriptors in SG mode 

In our current design, we are using AXI DMA in SG mode and an overview of the operation 

in SG mode for data transitions is as shown in the Figure 6.12. The heart of our system is the 

AXI DMA. This AXI DMA engine is used in SG mode (Scatter-Gather mode) in our design 

by connecting the SG mode interface pin to the HP0 register (High Performance port) of 

Processing System of Zynq. The AXI slave port of the PS i.e. HP0 is enabled. This AXI slave 

port HP0 is used to receive the data from the incoming AXI stream (S_AXIS_S2MM) and to 

put the data to the DDR3 (M_AXIS_S2MM). The same interface port is being used to do 

reverse operation i.e. to read the data from DDR3 (M_AXIS_MM2S) and put the data over the 

outgoing AXI stream (M_AXIS_MM2S). Through the GP0 port, AXI memory mapped master 

interface of the Zynq PS, the Stream generator or data source (in our case it is AXI 

1G/2.5Gigabit Ethernet Subsystem IP core or 10 Gigabit Ethernet Subsystem) is handled. Here 

AXI DMA has two channels, in one channel it is writing data into DRAM memory and in 

another channel, it is reading the data from the DRAM memory. The descriptors (transfer tasks) 

are stored in the HP0 register of PS. 
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Figure 6.12 Operation of AXI DMA and its role in data transactions 

During the design phase there are two important parameters to be changed in the 

customization of AXI DMA IP core and these parameters will affect the performance of data 

transfer from the PL to the PS for this component. As shown in the Figure 6.13, burst size is 

the number of data words we transfer in each read or write transaction. If we look at an AXI 

memory mapped connection between one AXI memory mapped master and one AXI memory 

mapped slave, at the time of initiating the transaction, the AXI memory mapped master can 

indicate the address of the transaction and the amount of data that the master wants to transfer. 

Indeed, the master doesn’t need to tell address of every single word of data but master will tell 

only the start address to transfer this data and then the burst length helps in indicating how 

many words of data have to be transferred. Here in our design we have selected a Max Burst 

size of 16, it means that the master will transfer 16 words of data or 32 Bytes of data for every 

transaction.  

Thus, the data on AXI interface can be transferred in bursts. In one transaction on AXI, N 

words can be transferred. Better throughput can be achieved for higher burst size. This 

parameter should be set to at least 16. We can set it up to 256 (maximum on AXI4). However 

the fact that PS AXI interfaces are AXI3 compliant limits the burst size to 16. Therefore, the 

AXI4 burst is split into several AXI3 bursts by the AXI interconnect. So we set the burst size 

parameter to 16 in our design. 

The width of buffer length register is another parameter that affects the performance of the 

data transfer from PL to the PS. Indeed, the AXI DMA has a kind of internal buffer, here we 

have selected the width of buffer length as 16, and it means that after transfer of 216 bytes i.e., 
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65 Kbytes of data, CPU should configure the AXI DMA again, i.e. the CPU is allowed to ask 

DMA to perform transfers up to 216 bytes. 

 

Figure 6.13 Customization of AXI DMA IP core 

6.12 Zynq PS 

A dual-core ARM Cortex-A9 MP Core based processing system (PS) and Xilinx 

programmable logic (PL) in a single chip along with the on-chip memory, external memory 

interfaces, and an abundant set of IO peripherals are the main features in the Zynq-7000 family 

based Xilinx All Programmable SoC architecture. In the current design, the software interface 

around the Zynq-7000 is “Processing System 7” IP core. The Processing System (PS) and 

Programmable Logic (PL) are integrated in the SoC giving a flexible solution on a single 

platform. This core acts like a link between the processing system and programmable logic 

besides giving a feature to join other customized and embedded IP cores in the Vivado IP 

integrator. 
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6.13  Implementation of Linux on Zynq PS 

We can run different types of software on the ARM host of Xilinx All Programmable SoC 

such as  

1. Bare metal (standalone) application directly executed by ARM cores. 

2. Linux OS running on the ARM cores and Linux kernel can handle both cores and can 

schedule different processes to different cores. 

3. In addition to these, Free BSD can be run on the ARM host or Free BSD or Windows 

OS can also be run on the Xilinx Zynq device. 

Since our hardware design with four Ethernet ports is ready, next step is to handle the four 

ports to receive the data from the detector modules in UDP packets by running UDP application 

to receive the packets and the chosen way is to boot Linux on Zynq and writing a software 

application that runs on processing system. PetaLinux tools from Xilinx offer Embedded Linux 

solution on Xilinx processing systems.  

Why use Linux in our project: 

If we are using Linux in our system, we will have these features already included 

1. Network/File System support. 

2. Inter process communication and memory management. 

This means two or more programs can exchange data between them and memory 

management meant for example, our program may ask some memory from the system 

to do something and leave this memory back to other programs. 

3. Multithreading (it will use two cores in our Zynq). 

4. Device drivers. 

Device drivers are special kind of software that make particular hardware available for 

our system. 

5. Open source code available. 

Compiling, porting the kernel and drivers can be challenging because Linux is complex, it 

takes time to boot, compared to booting the System on Chip for bare metal application. 
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6.14  Implementation of Linux on Zynq PS using PetaLinux  

Hardware contains a lot of parameters and the important information that is used during 

software development. These parameters are mostly related to the initialization of the Zynq PS 

and with different address ranges, ARM host here can access different components that we 

have on the PL. Therefore, an export of hardware is needed in Vivado Design Suite before the 

software development. For example, when we want to use the DRAM controller, there are 

some set of parameters which are to be initialized before the DRAM controller is used 

effectively. When ARM host begins operating, the first thing it should do is, it should program 

all of these registers. And a reference to these registers can be found in a Xilinx Technical 

reference manual, the final part of the manual contains details of these registers. 

Now we have Petalinunx Environment of the Xilinx in which we develop our Linux based 

application for our Zynq device. We have set of system configuration information which is 

reflecting different address values for different components inside our system and the type of 

the IP block present in our design. The set of information that is vital for the software 

development in fact specified in the hardware platform specification is exported from the 

Vivado environment to the Xilinx Software Development Kit is then being used for configuring 

the PetaLinux project. 

A simple software application is created on the Linux OS running on the ARM host of the 

Zynq and cross compilation is done using the tool set provided by the Xilinx tool. Generated 

binary after cross compilation is executed on the ARM host. 

After, the PL of the Zynq is programmed and after the bit stream is generated in Vivado as 

discussed in the 6.1, development of single Linux system at a time is supported by the 

PetaLinux project. Following are the main components in a PetaLinux project 

1. First Stage Boot Loader 

2. Device tree 

3. U-boot 

4. Linux kernel 

5. Rootfs 

The First Stage Boot Loader is responsible for programming the PL part and initializing 

the Zynq processor. And this is the first one that loads when we power up the Zynq. It will 

copy the Linux kernel into the processor’s SDRAM and initialize the Zynq processor. The 
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Zynq boot process starts with running code inside the Boot ROM, boot medium is selected and 

FSBL is quickly loaded. The FSBL is created by Xilinx tools using information from our 

hardware project.   

The device tree or Flattened Device Tree (FDT) is a data structure that contains byte 

coded format data, which is useful to the kernel when booting up. This amount of data is copied 

into the known address in the RAM before jumping into the kernel’s entry point. Then it jumps 

the kernel’s entry point. For example, in a PC, there are hardcoded initial registers and BIOS 

will supply the rest of the information. ARM processors do not have a BIOS, so Device tree is 

the opted solution. Thus, device tree is a way to convey the information about the specific 

hardware we have added or removed to the kernel so that a right driver is used by the kernel to 

handle the hardware. It is a file that describes all the devices and their drivers in the system. In 

simple words, Device Trees (DTB files) are used to describe the hardware architecture and 

address map to the Linux kernel. 

Device tree configuration: 

As discussed in 6.6, in handling the delays at the PHY side, it may depend on whether it is 

Linux or a stand-alone application. As such device tree is the best chosen way. Since we are 

doing a Linux application, to enable or disable the internal clock delays we specify a particular 

value for the “phy-mode” parameter in the device tree. 

 

Code snippet 2 Device tree configuration for phy-mode 

 

&axi_ethernet_0 {   

    local-mac-address = [00 0a 35 00 01 22];   

    phy-handle = <&phy0>;   

    xlnx,has-mdio = <0x1>;   

    phy-mode = "rgmii";   

    mdio {  #address-cells = <1>;   

         #size-cells = <0>;   

          phy0: phy@0 {   

            compatible = "marvell,88e1510";   

            device_type = "ethernet-phy";   

            reg = <0>;  };  };  }; 
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For each of the Ethernet interfaces (axi_ethernet_0, axi_ethernet_1, axi_ethernet_2 and 

axi_ethernet_3) the device tree is scripted in the above said way (Code snippet 2).  

 

To enable or disable the internal clock delays, we specify a particular value for the “phy-

mode” parameter.  

Both internal delays DISABLED:  

phy-mode = "rgmii";  

Both internal delays ENABLED:  

phy-mode = "rgmii-id";  

Only RX internal delay ENABLED:  

phy-mode = "rgmii-rxid";  

Only TX internal delay ENABLED:  

phy-mode = "rgmii-txid"; 

 

U-Boot, is a piece of software commonly used to load Linux into the board. 

Linux Kernel is the core of the Linux operating system with complete control over 

everything in the system. Kernel.org together with Xilinx additions (BSP and drivers) offer the 

Linux kernel for Xilinx Zynq. Linux kernel is the central part of the operating system that links 

the hardware with the applications.  

Linux Kernel job 

On a system, the job of a kernel is to manage all the following demands posed by different 

programs asking for resources at the same time: 

1. Process management 

2. Memory management 

3. File systems 

4. Device control 

5. Network 

 



Code snippet 3

 

arm-Linux-gnueabihf-gcc multiUDPfinal.c –o multiUDPfinal –pthread
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FSBL is executed first followed by execution of U-Boot that loads device tree and Linux 

kernel into the memory and followed by mounting rootfs. Thus, after the hardware bit stream 

and software images have been built, the new PetaLinux platform with the Zynq kernel is 

booted using SD card. The Figure 6.16 shows a high level block diagram of the design flow 

using Vivado and PetaLinux. 

 

Figure 6.16 Xilinx tools design flow at Implementation level [13] 

6.15  Implementation of clustering algorithm in PetaLinux 

As discussed in the previous section, the rootfs contains user applications written in C 

programming such as "multiUDP4final" added to our rootfs after cross compiling using arm-

Linux-gnueabihf-gcc. The following application is written in C for handling the four Gigabit 

Ethernet ports for acquiring data in UDP packets on four Ethernet ports where multi-threading 

concept is implemented for four Ethernet ports. And clustering algorithm is written in C 

program to process the data acquired from each Ethernet port. (See multiUDP4final program 

that has clustering algorithm in 11.1 in appendix) 

The Clustering application contains the algorithm required to cluster the data, the algorithm 

will run in such a way that it extracts the data from each frame and clusters the data based on 

time stamp in a time window of 5 ns and keeps it into a buffer. Later, the data can be sent out 

on 10 Gigabit Ethernet port.  



Figure 6.17

[14] 
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7. System Verification 

This study provides a measurement of Ethernet bandwidth utilization versus actual 

bandwidth from the stress tests performed on the datagrams. It provides information about the 

processor utilization during the tests and also when the user application for data acquisition on 

UDP packets and data processing is running.  

Maximum no. of frames per second  = 
    

(
 

) 

       = 
 

    
(

 
) 

      = 
 

 
(

 
) 

      = 81275 ( ) 

Thus, a maximum of 81275 frames per second on 1000 Mbps or 1 Gbps occurs for an 

Ethernet size of 1538 Bytes in the Ethernet frame. 

Transaction time for each frame   = ( ) = 12.3 (
  

) 

Whereas for jumbo Ethernet frame of size 9000 Bytes, the transaction time would be 64 µs. 

If a frame transaction of 12.3 µs occurs in an Ethernet network interface, it means that the 

software on the Processing System of Zynq has to finish handling and processing of a frame in 

12.3 µs and then available to handle the next arriving frame. This time bound execution will 

ensure that software is working in relation with the Ethernet hardware. If the software is unable 

to handle and process the frame in this time then it is unable to reach the much needed 

equilibrium with respect to Ethernet hardware to endure a line rate of 1 Gbps. A backpressure 

(during RX) or a starvation (during TX) are created on the hardware. The Ethernet hardware 

will overrun and drop the frames from the Ethernet wire because of this backpressure or the 

hardware will under-run and the wire is underutilized due to the starvation. 

7.1  Solutions for better performance from Ethernet design 

Few solutions for better performance of Ethernet have been discussed in 6.11 and 6.3 at 

design level. Also, the use of jumbo frames in high data intensive applications will increase the 

throughput. The performance is improved by larger frame size by decreasing the no. of 

fragments for a given size of data. 
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7.2  Solutions for better performance from user space 

When Linux kernel/XAPP1082 image is booted on Zynq 7000 AP SoC, following 

commands can be applied  

1. Configuring the MTU (Maximum Transmission Unit) to jumbo size on both the 

server and client. 

The size of the largest data unit in network layer that can be communicated in a single 

transaction is called Maximum Transmission Unit (MTU). 

In other words, MTU relates to the size of the final product from the transport layer after 

adding headers and checksum to the payload or data i.e., MTU relates to the data packet in the 

network layer before adding source and destination IP addresses in order to convert it into 

complete Ethernet frame in the datalink layer. So, if MTU is more, more throughput or data in 

a data segment in the transport layer and less number of data packets in the network layer and 

so less number of heads and tails appear in the Ethernet frame which implies that more 

throughput will fit in it. If MTU is less, then less throughput in the transport layer and more 

number of data packets in the network layer and so more heads and tails appear in the Ethernet 

frame. Thus, a greater efficiency comes with larger MTU because more user data fits into each 

network packet. A larger MTU resulting in fewer packets are processed for the same amount 

of data. 

 

Code snippet 6 Rising MTU to 9000 for network interfaces 

 

On server side (on Zynq) 

ifconfig eth0 192.168.1.11 netmask 255.255.255.0 up 

ifconfig eth0 down 

ifconfig eth0 mtu 9000 

ifconfig eth0 up 

 

On client side (on the host PC) 

ifconfig enp1s0f0 192.168.1.20 netmask 255.255.255.0 up 

ifconfig enp1s0f0 down 

ifconfig enp1s0f0 mtu 9000 
ifconfig enp1s0f0 up 
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2. The task set-2 feature is being used in the current project to share the load between 

two cores of ARM Cortex A9s when the application is being launched. 

3. Configuring Window size for better performance.  

4. For better performance, configuring Window size is one of the options. The client’s 

receive window on the receiver side and it is the server’s send window i.e. the no. 

of bytes, the client would like to receive from the server at one time. Similarly, the 

server can tell the client no. of bytes of data it would like to take from the client at 

one time and is a server’s receive window and client’s send window. Window size 

may drop down to zero dynamically if the receiver is unable to handle the data as 

fast as sender is sending the data. Better performance can be achieved with the 

larger size of the window. 

5.  –W option is used to specify the window size while using iPerf3 benchmarking. 

 

7.3  Test Results 

These measurements are obtained against iPerf3 client program running on Linux host PC 

with Ubuntu 16.04 OS and iPerf3 server program (an application in the rootfs or bin folder of 

the image) running on the Zynq PS with petaLinux image. 

 

7.4 Performance tests of Ethernet ports 

In the below figures, throughput achieved for actual bandwidths in Mbps and data loss 

occurred in percentages are shown. These are obtained during the stress tests performed on the 

Gigabit Ethernet ports. 
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Figure 7.1 Performance of Port 0 

 

Figure 7.2 Performance of Port 1 



 



 

Figure 7.6 Figure 7.7
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Figure 7.7 CPU Utilization (%) in parallel test and respective CPU core 

Figure 7.8 presents the CPU utilization in percentage and respective CPU core (see % CPU 

and CPU) when multiUDP4final application is running on Zynq PS. 

 

Figure 7.8 CPU Utilization (%) for multiUDP4final application 

Figure 7.9 presents the CPU utilization in percentage and respective CPU core (see % CPU 

and CPU) when multiUDP4final application along with clustering algorithm is running on 

Zynq PS. 

 

Figure 7.9 CPU Utilization (%) for multiUDP4final application with cluster algorithm 
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8. Conclusion 

The Ethernet port setup for data acquisition of phenoPET detector data is successfully 

implemented using the four Gigabit Ethernet ports on the PL of Zynq-7000 XC7Z045-

2FFG900C AP SoC using Vivado Design Suite. Data acquisition and data processing of 

PhenoPET data has been implemented successfully on PS of Zynq using Xilinx PetaLinux tool 

chain. After data acquisition for phenoPET data is performed on four Ethernet ports over UDP 

application written in C, clustering of the data from each port is performed over Zynq PS and 

buffered into system memory. 

In the current project we achieved almost full Ethernet bandwidths which can be seen under 

section 7.3 under System Verification chapter during the stress tests on the multiple Gigabit 

Ethernet ports. Percentage utilization of CPU cores of ARM is estimated during the stress test 

on each Ethernet port and during the parallel tests on the four Ethernet ports together. 

Percentage utilization of CPU cores of ARM during the user application task for UDP and 

clustering running on the Zynq Processing System is also done. These results for percentage 

utilization of CPU cores of ARM are shown in Figure 7.8 and Figure 7.9 under 7.5 section of 

Test Results chapter.  

The four Ethernet ports those are validated for UDP with iPerf3 are successfully verified 

using the same at different bandwidths in an interval of time. The clustering algorithm which 

has been validated for the already available PhenoPET data using MATLAB is successfully 

verified after the implementation of the algorithm over the Zynq PS. 

The UDP user application handling data acquisition on four Gigabit Ethernet ports written 

in the programming language C has been tested for the acquisition of phenoPET data and the 

clustering algorithm is also tested by running the algorithm on the Processing System of Zynq 

for data processing. 
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9. Outlook 

The results of CPU percentage utilizations while testing the four Ethernet ports (presented 

in 7.5 under Test Results chapter) did not reach our expectation during the stress tests on each 

of four Ethernet ports. This seems to be due to the processor being a bottleneck.. The same 

implementation might give better performance for percentage utilization of CPU on ZCU102 

ultrascale+ MPSoC since it has quad core architecture. If we want very low utilization of ARM 

cores in the stress tests, we need complete parallelization of our hardware design, including the 

processors on FPGA or more than two ARM cores to handle the multi Gigabit ports. 

Due to time constraints, the implementation of 10 Gigabit Ethernet for sending the clustered 

data out is an upcoming challenge and can be implemented in future approaches in this project. 

The implementation of Ethernet interfaces to send the clustered data out at higher bandwidths 

adds fulfilment to the current project resulting in a complete setup for data acquisition and data 

processing for phenoPET project. The concept behind this thesis for data acquisition and 

processing at higher data rates can be extended for other projects also. 
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