
Implementation of UDP

communication on a ZYNQ platform

for processing clustered data based

on multiple Gigabit Ethernet ports

for phenoPET

Janani Subraveti

Zentralinstitut für Engineering, Elektronik und

Analytik (ZEA) • Systeme der Elektronik (ZEA-2)

Jül-4406

Berichte des Forschungszentrums Jülich 4406

Implementation of UDP

communication on a ZYNQ platform

for processing clustered data based

on multiple Gigabit Ethernet ports

for phenoPET

Janani Subraveti

Zentralinstitut für Engineering, Elektronik und

Analytik (ZEA) • Systeme der Elektronik (ZEA-2)

Berichte des Forschungszentrums Jülich

Jül-4406 • ISSN 0944-2952

Zentralinstitut für Engineering, Elektronik und

Analytik (ZEA) • Systeme der Elektronik (ZEA-2)

DE 46a (Master, Hochsch. Bremerhaven, 2017)

Vollständig frei verfügbar über das Publikations-

portal des Forschungszentrums Jülich (JuSER)

unter www.fz-juelich.de/zb/openaccess

Forschungszentrum Jülich GmbH • 52425 Jülich

Zentralbibliothek, Verlag

Tel.: 02461 61-5220 • Fax: 02461 61-6103

zb-publikation@fz-juelich.de

www.fz-juelich.de/zb

This is an Open Access publication distributed under the

terms of the Creative Commons Attribution License 4.0,

which permits unrestricted use, distribution, and

 reproduction in any medium, provided the

 original work is properly cited.

Abstract

As part of biological research carried out on plant phenotyping within the Jülich Plant

Phenotyping Centre, a modality to detect the positron emitting radionuclides has been setup.

The investigation of transport of short-lived carbon isotope 11C within plants using 11CO2 as

radiotracer fixed during the photosynthesis dark reactions is the idea behind this research. The

Flow and distribution of 11C-labelled photo assimilates within a plant can then be imaged using

the PET (Positron Emission Tomography) technology. To this end, a PET imaging system has

been developed. This consists of scintillation detectors with scintillation crystals coupled to

photodetectors. The radiation, which is emitted after the uptake of the radiotracer, causes light

pulses within the scintillation crystals. This light is then converted into electrical signals by the

photodetector. The “phenoPET” system is a PET scanner dedicated for plant research that

employs digital SiPMs (Silicon Photo Multipliers) as photodetectors organised in 36 detector

modules resulting in hit events based on the triggered photon counts fitted in data frames by a

central FPGA based unit.

Present study starts with developing a prototype that uses Ethernet FMC module (from

Opsero Electronic Design) with four Gigabit Ethernet ports. Concerning illustration based on

the pre framework design of data transfer from detector modules, data stream flows from each

detector module (consisting of 4 tiles) to the FPGA board (Xilinx Kintex-7 FPGA Mini Module

Plus (Avnet)) on LVDS lines. From the FPGA board to the readout computer, USB 3.0 (at 300

MB/s (2.4 Gbps)) is used. For the connection from the readout computer to the storage system

(located at air-conditioned place), 10 Gigabit Ethernet is used. Besides, our design is an add-

on to the module FPGA, data stream from module FPGA is sent to ZC706 evaluation board

(Xilinx Zynq-7000 All Programmable SoC) when the Ethernet FMC module is mounted on

FMC (FPGA Mezzanine Card) connector of the ZC706 board. The data is received by four

ports over the UDP server application running on the Zynq Processing System. Data reduction

technique like clustering on timestamps (when multiple data packets occur in an event of hits)

is performed in a time window between 1 - 5 ns. Processed data is sent out from one of the 10

Gigabit Ethernet ports on ZC706 after frame skipping technique being performed on every fifth

frame. This study provides a measurement of Ethernet bandwidth utilization versus actual

bandwidth from the stress tests performed on the datagrams. It provides information about the

utilization of multi processors when the UDP application is running.

Acknowledgements

I would like to express my gratitude to Dipl.-Ing. Mario Schlösser for giving me this opportunity

to work with Forschungszentrum Jülich GmbH and for his immense support till the end.

I would like to take the opportunity to thank Prof.Dr.-Ing. Kai Müller from the department of

Embedded Systems Design at Hochschule Bremerhaven for kindly accepting the proposal of

being my supervisor for my Master’s thesis in the Central Institute for Electronics and Analytics

(ZEA-2), Forschungszentrum Jülich GmbH, Jülich. I am hugely indebted to my professor for

finding out time to reply to my emails.

I am grateful to my supervisor M.Eng. Sebastian Völkel for not only giving the opportunity to

accomplish my thesis work in his workgroup but also for all the valuable guidance as being my

supervisor at the institute.

I thank Dr. Matthias Streun for his valuable discussions on phenoPET project.

I thank all the people who helped me and supported me throughout the journey of my research

study at ZEA-2, Forschungszentrum Jülich GmbH, Jülich.

Special thanks to IT team for all the immediate help in software and equipment support during the

tough times in the research study.

I hold immense pleasure to thank my parents for all the faith and my close friend for her moral

support throughout my journey till now. Last but not least, I thank my cousin for correcting English

grammar and spellings in the thesis.

i

Table of Contents

Abstract ... i

Acknowledgements .. vii

Table of Contents .. i

List of figures ... iii

1. Introduction .. 1

1.1 Methods and Technologies at the Jülich Plant Phenotyping Centre 2

1.2 PlanTIS .. 3

1.3 phenoPET .. 3

1.4 Project description of pre-framework of phenoPET setup .. 4

2. Motivation and Purpose ... 10

3. Requirement and System Analysis .. 12

3.1 Hardware requirements ... 13

4. Validation Strategy .. 18

4.1 Validation Strategy for Data Acquisition .. 18

4.2 Validation Strategy for Data Processing ... 20

5. System Concept ... 21

6. System Implementation ... 24

6.1 Hardware Design in Xilinx Vivado Design Suite ... 24

6.2 Implementation of PHYs of Ethernet FMC in Vivado ... 25

6.3 AXI 1G/2.5G Ethernet Subsystem IP ... 28

6.4 AXI Bus... 29

6.5 Gigabit Ethernet subsystems and DMA engine .. 29

6.6 Application Data path on ZC706 .. 30

6.7 DMA Engine ... 33

6.8 AXI DMA and scatter-gather mode .. 33

6.9 Meaning of Scatter-Gather .. 33

6.10 Operation of Scatter-Gather DMA: Register mode ... 34

6.11 Operation of DMA: SG Mode ... 35

6.12 Zynq PS ... 38

6.13 Implementation of Linux on Zynq PS ... 39

6.14 Implementation of Linux on Zynq PS using PetaLinux .. 40

6.15 Implementation of clustering algorithm in PetaLinux ... 45

7. System Verification ... 47

ii

7.1 Solutions for better performance from Ethernet design .. 47

7.2 Solutions for better performance from user space .. 48

7.3 Test Results ... 49

7.4 Performance tests of Ethernet ports .. 49

7.5 CPU core utilization .. 52

8. Conclusion ... 54

9. Outlook .. 55

10. References ... 56

iii

List of figures

Figure 1.1 Root growth is monitored in so called “Rhizotrones” in which large number of

plants can be screened automatically. (1) .. 1

Figure 1.2 PlanTIS (2) ... 3

Figure 1.3 Pre-framework of phenoPET .. 4

Figure 1.4 Design flow for three rings in the pre framework .. 5

Figure 1.5 Design Architecture in the pre framework (5) ... 6

Figure 1.6 Scintillation Detector and photo electric concept ... 6

Figure 1.7 Detector module with and without cap (5) ... 7

Figure 1.8 Detector Tile (5) Figure 1.9 Scintillator Matrix (5) ... 7

Figure 1.10 Light sharing on Die Pixels (5) .. 7

Figure 1.11 A cause for clustering scenario ... 8

Figure 1.12 Concentrator Board with Kintex evaluation board and cable adapter (5) 9

Figure 3.1 System Analysis ... 12

Figure 3.2 Ethernet FMC module or adapter for FPGA .. 13

Figure 3.3 Functional overlay of ZedBoard (7) ... 14

Figure 3.4 Functional overlay of ZC706 evaluation board (8) .. 15

Figure 3.5 ZC706 Evaluation board block diagram (8) ... 15

Figure 3.6 High Level Block Diagram (8) ... 16

Figure 3.7 Zynq 7000 Block Diagram (8) ... 16

Figure 3.8 Hardware Setup on ZC706 Board in the project .. 17

Figure 4.1 Networking framework based on simplified OSI for the DAQ 18

Figure 4.2 Flow of data from physical to transport layer in current project 18

Figure 4.3 Example for Cluster .. 20

Figure 5.1 Design flow in current framework ... 22

Figure 5.2 System concept at hardware level on an example set up with ZedBoard (9) 23

Figure 6.1 System Design Overview ... 24

Figure 6.2 Clock skew stages in RGMII interface (10) ... 25

Figure 6.3 RGMII Interface without clock skew (10) ... 25

Figure 6.4 RGMII Interface with clock skew (10) .. 26

Figure 6.5 AXI 1 G/2.5 Gigabit Ethernet Subsystem in the current design 28

Figure 6.6 Gigabit Ethernet Design block diagram using Zynq-7000 AP SoC (11) 29

iv

Figure 6.7 Ethernet Data movement in Zynq-7000 AP SoC (11).. 31

Figure 6.8 Ethernet Data movement in Zynq AP SoC with 4-port Ethernet FMC module 32

Figure 6.9 Example for scattering and gathering of data stream .. 34

Figure 6.10 Operation of DMA engine and buffer descriptors in register mode 35

Figure 6.11 Operation of DMA engine and buffer descriptors in SG mode............................ 36

Figure 6.12 Operation of AXI DMA and its role in data transactions 37

Figure 6.13 Customization of AXI DMA IP core .. 38

Figure 6.14 Linux Kernel Components ... 43

Figure 6.15 Flash or SD Card Contents and RootFS structure .. 44

Figure 6.16 Xilinx tools design flow at Implementation level (12) ... 45

Figure 6.17 Block diagram for Linux driver for PL Ethernet for 10 Gigabit Ethernet (11) 46

Figure 7.1 Performance of Port 0 ... 50

Figure 7.2 Performance of Port 1 ... 50

Figure 7.3 Performance of Port 2 ... 51

Figure 7.4 Performance of Port 3 .. 51

Figure 7.5 CPU utilization for stress test on each Gigabit port at 1 Gbps 52

Figure 7.6 CPU Utilization (%) in parallel test and respective CPU core 52

Figure 7.7 CPU Utilization (%) in parallel test and respective CPU core 53

Figure 7.8 CPU Utilization (%) for multiUDP4final application .. 53

Figure 7.9 CPU Utilization (%) for multiUDP4final application with cluster algorithm 53

1

Introduction

1. Introduction

To encourage the development of non-invasive technologies to be applied for plant and

breeding, the DPPN (German Plant Phenotyping Network) in collaboration with the

Forschungszentrum Jülich, the Leibniz Institute of Plant Genetics and Crop Plant Research

(IPK) in Gatersleben and Helmholtz Zentrum München (HMGU) is carrying out research.

Scanner technology using PET, Positron Emission Tomography technique is such a non-

invasive technology. Improvement in plant and agricultural research is important for

understanding and solving some difficulties of the future. Keeping in mind, the end goal to

ensure the adequate sustenance supply for the world's fast-growing population, there is a need

for higher crop yields and plants which are optimized for higher resistance to environmental

stresses [1].

With a specific goal to confront these difficulties, the phenotype of a plant (i.e. the plant we

really notice or observe – in contrast to the genotype, which is the heritable toolbox of the

plant) is the consequence of the interaction between the genetic (hereditary) potential and the

effect of environmental factors to which it is and was exposed. DPPN wants to gather

quantitative data on the structural and physiological properties of plants and to apply this for

primary plant research and breeding. For this reason, new and better techniques to decide, for

instance, the size and shape of plants, their resistance to stress or the concentration of important

metabolites are being developed [1].

Figure 1.1 Root growth is monitored in so called “Rhizotrones” in which large number of

plants can be screened automatically [1].

2

Introduction

DPPN had setup frameworks to investigate plants under defined environmental conditions

in the laboratory and in the field. For example,

 Root structures will be investigated by magnetic resonance imaging.

 Development rates and photosynthesis intensity and/or efficiency of plants are analysed

in automated ways and with robots.

 Water relations of crops are also determined – all for the general aim “to make plants

better”.

1.1 Methods and Technologies at the Jülich Plant Phenotyping Centre

PET, Positron Emission Tomography is a scanner technology that can be implemented

into phenotyping methods which truly provides insight into plant organs. Non-invasive analysis

of subterranean structures and functions is possible with this and it has created a basis for in-

depth phenotyping. This technique allows to detect positron emitting radionuclides in an object.

For this purpose, 11C, positron emitting radionuclide is induced into the plant in the form of

11CO2 as radio tracer. During the photosynthetic dark reactions, 11CO2 is fixed and the products

formed during these reactions are called as photo assimilates. These products formed are

labelled with 11C radio isotope and are transported along the plant.

The PET technology can be used to non-invasively identify the flow and distribution of

these 11C-labelled photo assimilates by detecting the gamma radiations emitted by positron-

emitting radioisotope. An advantage of PET technique can be found from the following

example. The photo assimilates formed (or the food synthesised by leaves during these

photosynthesis reactions) are moved to all parts including the root tips embedded deep inside

the soil. Transport of the carbon over longer distances proceeds through the conducting or

vascular tissues (the xylem and the phloem) inside the plants. The cells in these conducting or

vascular tissues are under high stress and sensitive to manipulate. Therefore, the transport

inside them is hard to be accessed with invasive techniques. The PET technology, a non-

invasive form offers interesting chance to detect spatial and temporal distribution and 3D

mapping of these radio traces in a plant. Two plant committed PET frameworks have been in

operation at Institute of Bio and Geosciences (IBG-2, Plant Sciences) in Jülich

Forschungszentrum, they are PlanTIS and phenoPET.

3

Introduction

1.2 PlanTIS

PlanTIS (Plant Tomographic Imaging System) is a custom-built instrument based on Clear

PET technology. It is suited for small samples with a maximum field-of-view (FOV) of around

65mm in diameter and a height of 100mm that has been built in 2006 and in operation since

2008 [2].

Figure 1.2 PlanTIS [2]

1.3 phenoPET

phenoPET is also a custom built novel instrument that includes last generation digital

photon counter (DPC) technology. The system will provide a field-of-view (FOV) of around

180mm in diameter and 190mm in height and will have much higher detection sensitivity than

PlanTIS.

Therefore, phenoPET will contribute to the many plant phenotyping approaches at IBG-2

but only for low throughput applications. The development of this system is a cooperation

between three institutes at Forschungszentrum Juelich (ZEA-2: Electronic Systems, ZEA-1:

Engineering and Technology and IBG-2: Plant Sciences) and Philips Digital Photon Counting,

Aachen, Germany and supported by the Bundesministerium für Bildung und Forschung

(BMBF) within the German-Plant-Phenotyping Network (DPPN) [3].

4

Introduction

1.4 Project description of pre-framework of phenoPET setup

The development of PET detector for plant phenotyping by Forschungszentrum Jülich

together with Philips Digital Photon Counting, Aachen has the scientific goal to study the

carbon transport in plants. As discussed in 1.1, the PET technology can be used to non-

invasively identify the flow and distribution of these 11C-labelled photo assimilates by

detecting the gamma radiations emitted by positron-emitting radioisotope. Gamma rays are

emitted when electron-positron annihilation (collision) takes place in the decay of certain

radioactive nuclei. This results in creation of gamma ray photon. A ring of digital photon

counters to detect the photon pairs recently developed by Philips is being used. For the

prototype, for data concentration and for the processing of the coincidences, a Xilinx Kintex

evaluation board was used. It is assumed that the necessary data rate from the FPGA to the

acquisition computer is about 300 MByte/s. As data link a 10 Gigabit Ethernet link would be

preferred, but the evaluation board contains a USB 3.0 interface already, therefore it has been

chosen to use in order to reduce the development costs. (See Figure 1.4) Design overview of

pre-framework of phenoPET setup.

Figure 1.3 Pre-framework of phenoPET

The PET framework in its last setup will comprise of three rings of photon detectors. The

first version of the PET will have just a single ring, other rings will be added later. Twelve

detector modules are present in each ring and each detector is connected to central FPGA board

with standard HDMI cables. The data transfer from the detector module to the FPGA board

1.4

6

Introduction

Figure 1.5 Design Architecture in the pre framework [5]

Photon detectors and clustering concept

11C, a short living isotope is chosen for the research study. It needs a scanner with high

dynamic range as fast timing and high data rates are important so the Digital Silicon

Photomultiplier DCP 3200-22-44 developed by Philips Digital Photon Counting, Aachen were

chosen. There are 3200 cells (diodes) present in one pixel of the detector. This is a pure digital

device as the number of broken-down cells are counted. One detector module comprises of 4

tiles, each tile has 4*4 dies (See Figure 1.8) and each die has 2*2 pixels. A timestamp (44 ps

resolution) and the number of broken-down cells for each pixel are stored for an event of hit.

When an event of photon hit occurs, all four pixels of the die are always triggered together. A

total of 9216 pixels (3×12×4×16×4) are present in the complete PET with three rings [4].

Figure 1.6 Scintillation Detector and photoelectric concept [6]

7

Introduction

Figure 1.7 Detector module with and without cap [5]

Figure 1.8 Detector Tile [5] Figure 1.9 Scintillator Matrix [5]

Figure 1.10 Light sharing on Die Pixels [5]

Each detector module accommodates four 8×8 pixel Digital Photon Counter devices DPC-

3200-22-44 connected to a PCB. A scintillator matrix with 16×16 individual LYSO

scintillators is attached to each of this Digital Photon Counter device. (See Figure 1.89) Crystal

size is 1.85×1.85×10 mm3. The matrices (Crystal Photonics) are composed with both reflective

and transparent contact faces between the crystals in order to optimize crystal identification.

The typical detector for detecting the gammas in a PET scanner is the scintillation detector.

The scintillator converts the gamma into a light flash which is detected by a photodetector.

8

Introduction

Figure 1.11 A cause for clustering scenario

Ideally, the scintillator idea with the special crystal matrix should keep the light of a single

crystal on one Die only (as shown in Figure 1.11) so that for each event of hit only one Die

should trigger but because of the cross talk often more than one i.e., two or even more Dies

trigger on the same event. This can be recognized by identifying the Dies that “group together”

i.e. in other words which means “cluster together”. This scenario implies that, the timestamps

of those events are close and can be in a clustering window of dtClus. All Dies within this

clustering window form a cluster and are expected to belong to the same event.

FPGA Board

The Xilinx Kintex-7 FPGA Mini-Module Plus (Avnet) as central processing unit for data

concentration and coincidence logic is chosen because of the limited development time

Its features:

Enough LVDS-IOs for 12 detector boards

256 Mbyte SDRAM

No 10 Gb-Ethernet

Instead USB 3.0, fast enough for the expected data rate (300 Mbyte/s).

The boards can be cascaded in a tree structure if more inputs become necessary. 10 Gigabit-

Ethernet was the preferred connection with the readout computer, but the Kintex board has

only 1Gigabit-Ethernet which is not fast enough. Instead it has a USB 3.0 interface which can

be easily used. Figure 1.12 shows the FPGA board with the adapter board for the HDMI cables.

(The PCI e connector is not used.). The USB connection of the Kintex board is realised by a

Cypress CYUSB3014 chip. This chip is in fact an ARM926EJ processor (32 bit, 200 MHz,

9

Introduction

512 k Byte SRAM). The GPIOs are used for FIFO interface with a width of up to 32 bit and

running at 100 MHz. This FIFO interface is connected to a DMA engine inside the FPGA

which in turn uses the AXI framework to read data from or write data to the DDR3 memory

[4].

A Micro Blaze Processor embedded in the FPGA is used for control and diagnostics.

Because of the limited length of a USB-3 cable the readout computer should be located near

the PET, but the storage system will be connected via 10 Gigabit Ethernet and be located in an

air-conditioned place [4].

Figure 1.12 Concentrator Board with Kintex evaluation board and cable adapter [5]

10

Motivation and Purpose

2. Motivation and Purpose

This thesis work has started with an aim to co-assist the phenoPET project. As discussed in

Figure 1.4, in the pre-design framework for data acquisition of phenoPET data, the data transfer

from each detector module to the module FPGA and then to the Concentrator Base Board with

Kintex FPGA in it uses LVDS, Low-voltage differential signalling. Next from FPGA board to

the readout computer USB 3.0 is used.

The data rates at each stage in the pre-design framework are as follows. In the first stage,

the event data are transferred via 2 LVDS lines running at 100 MHz to the Module FPGA,

giving a bandwidth of 200 Mbit/sec or 25 Mbyte/s.

25 327 (=) = ~ 8 Tile frame data. (1)

The data from each tile is transferred on frame base giving 8 Kbytes tile frame data.

8 × 4 = 32 All tiles frame data.

(2)

25 × 4 = 100 Data rate for processing total data stream from 4-tiles.

For 4 tiles (one module), a total of 32 Kbytes, all tiles frame data requires a data transfer

rate of 100 Mbyte/s to the Module FPGA.

Next, this data from each module (Module FPGA data) is transferred to the Concentrator

Base Board via single LVDS line running at 400 MHz, giving a bandwidth of 50 Mbytes/s.

50 × (=) = ~16 Module frame data. (3)

50 × 36 = 1800 Data rate for processing total data stream from 36

modules.

(4)

All data is transferred on frame base giving 16 Kbytes Module frame data. For 36 modules,

a data transaction rate of 1800 Mbytes/s versus USB3.0 of 300 Mbytes/s has been used.

×
= = 150 Data rate for processing clustered data stream from

36 modules.

(5)

11

If the data is clustered, in order to process the clustered data out considering a contrast factor

of 4, 150 Mbytes/s versus USB3.0 of 300 Mbytes/s has been used. All these data rates and

design flow can be seen in Figure 1.4.

The purpose of the current thesis is to provide higher data rates or bandwidths during data

acquisition and processing. Besides Concentrator Base Board that receives data on LVDS lines,

ZC706 evaluation board with Ethernet FMC module on the FMC connector will receive the

data from the module FPGAs over 1 Gigabit Ethernet port of Ethernet FMC resulting in a data

rate 1000 Mbps or 125 Mbytes/s instead of 50 Mbytes/s (see lines above (3)). The approach

to send the data out to the readout computer on 10 Gigabit Ethernet port giving a bandwidth of

1250 Mbytes/s which is close to 1800 Mbytes/s (see lines below (4)) instead of using USB 3.0

with a bandwidth of 300 Mbytes/s is much faster. This ratio gets even better with preprocessed

clustered data, which would result in 150 Mbytes/s being send with 1250 Mbytes/s instead of

300 Mbytes/s.

12

Requirement and System Analysis

3. Requirement and System Analysis

Based on the motivation and purpose discussed in previous chapter, following requirements

are chosen and an analysis is drawn at system level for higher data rates. These Requirements

are categorized into hardware and software which are going to be discussed in the following

chapter. This analysis is performed at system level in both hardware and software point of

views. Table 1 presents the requirements and respective hardware interfaces chosen.

Requirement Hardware interfaces chosen

4 Gigabit per second data rate for data

acquisition

Ethernet FMC module with four 1 Gigabit

Ethernet ports

10 Gigabit per second data rate for sending

data out

Board with 10 Gigabit Ethernet support

(SFP module)

A board with FMC connectors, FPGA and

Processor for data acquisition and

processing

Xilinx Evaluation Board with Zynq

Processing System (ZC706 and ZCU102 are

chosen)

Designing of hardware setup and

development of software application

running on Procesor to handle the data.

Xilinx Vivado Design Suite and PetaLinux

tools

Table 1 Requirement specification and hardware chosen

 Figure 3.1 System Analysis

13

Requirement and System Analysis

3.1 Hardware requirements

Ethernet FMC

Opsero Electronic Design Inc. a design consultancy specialized in FPGA technology has

designed a product called Ethernet FMC. The main component in this project is Ethernet FMC

module. This is a quad Gigabit Ethernet mezzanine card for FPGA as shown in the Figure 3.2.

A mezzanine card is a smaller form of the more familiar Peripheral Component Interface (PCI)

or Industry Standard Architecture (ISA) card.

Figure 3.2 Ethernet FMC module or adapter for FPGA

If Ethernet FMC is being used, the Ethernet MAC is inside the FPGA and the PHY is the

Marvell 88E1510. The Marvell 88E510 PHY is the default configuration of the Ethernet FMC

with auto negotiation for 10 Mbps, 100 Mbps and 1 Gbps capabilities and also the MDI

automatic crossover features are supported.

14

Requirement and System Analysis

ZedBoard

ZedBoard is an affordable evaluation and development board for the Xilinx Zynq 7000 all

programmable SoC (APSoC). ZedBoard contains Xilinx XC7Z020-1CSG484CES Extensible

Processing Platform (EPP). It has a dual Cortex-A9 Processing System (PS) with 85,000

Series-7 Programmable Logic (PL) cells. It is based on the Xilinx Zynq-7000 Extensible

Processing Platform which can be useful for broad use in many applications. Some of the

features like 512 MB of DDR3 along with 256 MB of QSPI Flash, 10/100/1Gigabit Ethernet

interface, one LPC (Low Pin Count) FMC (FPGA Mezzanine Card) interface and an SD card

interface made us to have ZedBoard to be chosen development board in the current project [7].

But concerning the compulsion for one 10 Gigabit Ethernet interface to send the clustered data

out and also for higher DDR3 specification for higher data processing to take place, Zynq-7000

All Programmable SoC ZC706 has been chosen. But in the beginning stages of the project, the

data acquisition has been performed on ZedBoard on the four Ethernet ports of Ethernet FMC

connected to the LPC FMC interface.

Figure 3.3 Functional overlay of ZedBoard [8]

15

Requirement and System Analysis

ZC706

For developing and evaluating designs targeting the Zynq-7000 XC7Z045-2FFG900C AP

SoC, the ZC706 evaluation board is used. The XC7Z045 AP SoC has an integrated processing

system (PS) and programmable logic (PL) on a single piece as shown in Figure 3.6.

Figure 3.4 Functional overlay of ZC706 evaluation board [9]

Various interfaces for System on Chip with Zynq PS and Kintex PL present on ZC706

evaluation board can be seen in the Figure 3.5.

Figure 3.5 ZC706 Evaluation board block diagram [9]

16

Requirement and System Analysis

A high-level block diagram connecting Programmable Logic (PL) and Processing System

(PS) consisting of memory interfaces, Application Processor Unit and IO peripherals on AXI

interface is shown in Figure 3.6.

Figure 3.6 High Level Block Diagram [9]

Two ARM Cortex – A9 MP core application processors, AMBA interconnect, internal

memories, external memory interfaces and peripherals like USB, Ethernet, SPI, SD/SDIO, I2C,

CAN, UART and GPIO are integrated inside the Processing System. The PS runs

independently of the PL and boots at power-up or reset. A system level block diagram with

required components in PS and PL of Zynq 7000 AP SoC is shown in Figure 3.7 [9].

Figure 3.7 Zynq 7000 Block Diagram [9]

17

Requirement and System Analysis

The actual hardware set up for data acquisition and processing with Ethernet FMC is shown

in Figure 3.8.

Figure 3.8 Hardware Setup on ZC706 Board in the project

Software to be used

 Xilinx Vivado Design Suite for generating hardware description file of the system

under design.

 Xilinx PetaLinux tools for configuring the embedded Linux platform on the ZC706 and

implementing the above tasks on the hardware platform.

18

Validation Strategy

4. Validation Strategy

Since the project has its purpose for data acquisition and processing at higher data rates, it

can be validated in following ways before proceeding to implementation for UDP and

clustering.

4.1 Validation Strategy for Data Acquisition

PhenoPET detector has tile frame data of size 8 Kbytes and a total of 32 Kbytes of data from

each detector module is transmitted at 1 Gigabit/s rate to the Processing System of Zynq on

UDP. A fastest and most simple way for transmitting data to the receiver is possible by UDP.

There is no chance for interference in the stream of data under transmission. This prompts an

approach for an application to get as close in order to meet the real-time constraints as possible.

The four ports receive data from the module FPGA. Since UDP is connectionless, therefore the

current system can be validated on UDP data packages of four modules on four Ethernet ports

in real time to validate data processing on FPGA as shown in the Figure 4.2.

Figure 4.1 Networking framework based on simplified OSI for the DAQ

Figure 4.2 Flow of data from physical to transport layer in current project

In digital communication, a message that is sent from one end point to another without any

preliminary arrangement is described as “connectionless”. Without first guaranteeing that the

recipient at another end is accessible or ready to receive the data, the device at one end of the

communication transmits data to another end. Data is to be resent several times if there are

19

Validation Strategy

problems with the transmission because the device at one end sending the data simply sends

data addressed to the intended recipient. The User Datagram Protocol (UDP) and Internet

Protocol (IP) are two such connectionless protocols.

Delivery of all packets is not assured so the connectionless service is an unreliable one. The

connectionless service is also called a “best-effort service”, though all attempts to deliver a

packet will be made, the unreliability is may be due to hardware faults or exhausted resources

and packets may be quietly dropped, duplicated or delayed and may arrive in an improper order.

TCP provides a reliable connection and majority of current Internet applications utilize this

protocol. In addition to the features like error checking and correcting, TCP is also in charge

of controlling the speed at which the data is sent. One of the qualities of TCP is congestion

control in the network where transmission speed will be backed off when congestion occurs.

Thus, network is safeguarded from congestion collapse.

TCP would be a preferred protocol to be used because of its features like congestion control.

Because of the fact that TCP is a reliable service, delays are introduced at whatever point a bit

error or packet loss takes place. Delay is caused because of the retransmission of the broken

packet, along with any successive packets that are already been sent can be a large source of

jitter. Combined, jitter is raised to an unacceptable level rendering TCP unusable for real-time

services. Our current project has the advantage of not requiring a completely reliable transport

level. A click or a minor break would only be introduced into the output due to loss of a packet

or there is not much effect while further processing the packets.

For these reasons, UDP is being used for the data transmission in our project. UDP is a thin

layer on top of IP that inherits all of the properties of IP that TCP attempts to hide. UDP is

therefore also a packet based, connectionless, best-effort service. Providing any necessary error

checking is up to the application by splitting data into packets.

Since UDP is chosen way for data acquisition of phenoPET detector data on the Processing

System of Zynq, iPerf3 can be used to validate the data acquisition over UDP at different

bandwidths by running iPerf3 server on the Zynq PS and iPerf3 client that send user datagrams

to the server in specific intervals of time.

In

20

Validation Strategy

4.2 Validation Strategy for Data Processing

Our current project aims for the clustering technique to be performed while processing the

data.

As discussed Seite 4, when an event of photon hit takes place, only one die has to be

triggered for the light of a single crystal but more than one i.e., two or even more Dies trigger

on the same hit event. Then the time stamps of those events are close and are in a window

which are expected to belong to the same event. So, Clustering technique aggregates all the

data that (presumably) belongs to an event. That is, that the time stamps are controlled. As long

as the difference in the time stamps of successive data from different dies is less than e.g. 5 ns,

they are assumed to originate from the same event. The pixel values of all these then, together

with the earliest time mark, form the data packet for this event.

Figure 4.3 Example for Cluster

Clustering is the first thing to do with the data processing in the FPGA. In doing so, all

relevant pixels together with the first time mark are tied together into a data packet.

The clustered data can be validated from MATLAB runs performed over the phenoPET

detector data frames. These results can be compared to the results obtained when the actual

algorithm runs on the Zynq PS. (Compare results in clustered data output results in 11.3 and

11.4 in Appendix)

21

System Concept

5. System Concept

Based on the requirement and system analysis discussed in chapter 3, in the current project,

the target evaluation board, ZC706 has been used and the Ethernet FMC module has been

mounted on the LPC FMC of the board for data acquisition and data processing. This board

receives data at a speed of 1 Gigabit/s or 125 MBytes/s on each of the four Ethernet ports. Data

is received on the UDP application running on the processing system. Algorithm to identify

the clustered events based on the closeness of timestamps in a cluster window is performed on

the data acquired on the Zynq Processing System (C programming). And the clustered data is

sent out to the readout computer on one of the Ethernet ports at a speed of 10 Gigabit/s or 1250

MBytes/s.

Tasks overview

 1st step: To configure the ZC706 evaluation board for network interfaces for the four

Ethernet ports of Ethernet FMC module.

 2nd step: Boot Linux on the processing system of the board and communicate to the four

ports from a host PC on the network interfaces.

 3rd step: Send data in UDP packets to the four ports when UDP application program is

running on the processing system.

 4th step: Run the algorithm on the data from each port in order to identify clusters in

cluster window based on time stamp after the data being extracted and send the reduced

data out after performing the algorithm at 10 Gigabits/s on another Ethernet port.

A host PC acts like a medium only, to configure the board and setup the network interfaces.

In real-time the data is directly sent from the module FPGA to the four Ethernet ports of the

Ethernet FMC module. Stress tests are performed on all four Ethernet ports and percentage of

packet loss at different bandwidths is calculated. Processor utilization for each task is also

known.

Since currently developed prototype uses Ethernet FMC module (from Opsero electronic

design) with four Ethernet ports. This Ethernet FMC module is mounted on ZC706 evaluation

board via an FMC connector on the board. This design is added to the module FPGA in the

previous prototype for data acquisition in phenoPET project as discussed before (under 1.4 and

see Figure 1.4). The current design flow including the data rates is shown below as Figure 5.1.

23

System Concept

The incoming data streams from four module FPGAs now go to UDP server application

running on the Zynq processing system on the ZC706 evaluation board through the four ports

of Ethernet FMC module that is mounted on FMC connector. Data reduction technique called

clustering on timestamps (when multiple data packets occur in an event of hits) is performed

in a time window of 5 ns. Processed data will be sent out on the 10 Gigabit Ethernet port on

ZC706 after frame skipping technique being performed on every fifth frame.

An idea or the concept before proceeding for implementation on ZC706 board is shown on

a Zynq AP SoC (here on ZedBoard) in Figure 5.2. In implementation point of view, the physical

layers implemented by Ethernet FMC are connected through RGMII interface to the MAC

layer implemented by IP cores on the FPGA in Vivado design suite and Linux OS is booted

that runs on the ARM processor that implements networking support is required.

Figure 5.2 System concept at hardware level on an example set up with ZedBoard [10]

24

System Implementation

6. System Implementation

Complete system implementation can be split into two categories, first is design phase of

hardware in Xilinx Vivado Design Suite and the second is software development using Xilinx

PetaLinux tools.

6.1 Hardware Design in Xilinx Vivado Design Suite

The Figure 6.1 is a pictorial illustration for the actual hardware design done in Xilinx

Vivado Design Suite. It is portrayed below for an easy reference in this section as many of the

concepts are to be explained here.

Figure 6.1 System Design Overview

The Vivado Integrated Design Environment (IDE) has an IP-centric design flow in which

one can add IP modules to the design from different design sources. A GUI called IP Integrator

helps in faster pin connection to IP enabled by an AXI based common user interface. This will

greatly decrease the time and efforts for the design. There is also a feature called IP subsystem

for multiple IP into one.

In the implementation point of view, the main aim of our project can be described based on

Figure 6.1. There is IP cores depicting the actual hardware on the PL side and this hardware

receives the detector module data of phenoPET when connected to the Ethernet. This data is

copied over the AXI interfaces to the DRAM memory and the software we run here will process

the data on the ARM host and send the processed or clustered data out on 10 Gigabit port

depicted with another IP core on the PL side.

25

System Implementation

6.2 Implementation of PHYs of Ethernet FMC in Vivado

As shown in the Figure 6.1, the design implementation starts with connecting PHYs of

Ethernet FMC and MACs of Ethernet Subsystem IP core. During implementation, there are

some corrections or skews to be considered in the application data paths. The Ethernet PHY

and the Ethernet MAC have a physical connection called RGMII interface between them. A

dual data rate (DDR) interface called RGMII interface that consists of a transmit path from

FPGA to PHY and a receive path from PHY to FPGA interfaces is present between them.

Independent clocks, 4 data signals and a control signal are present in both the paths.

The data and clock are output simultaneously in the RGMII standard specification (i.e.

without any skew on the clock), as shown in Figure 6.2.

Figure 6.2 Clock skew stages in RGMII interface [11]

But if the data signals are to be properly sampled at the receiver side, the delay has to be

added to the clock signal, either by the PCB traces or by the receiver itself in the RGMII

standard. The clock and data signals after delay in the clock has been added is shown in the

Figure 6.4.

Figure 6.3 RGMII Interface without clock skew [11]

[11]

Figure 6.2

set_property CLKOUT1_PHASE 0 [get_cells

design_1_i/axi_ethernet_0/U0/eth_mac/U0/tri_mode_ethernet_mac_supp

ort_clocking_i/mmcm_adv_inst]

27

System Implementation

The RGMII TX clock delay is performed in the FPGA fabric by default for AXI Ethernet

Subsystem. It uses an MMCM to produce a clock that is phase shifted by 90 degrees with

respect to the “gtx_clk”. Mixed Mode Clock Manager (MMCM) produces a clock that is phase

shifted by 90 degrees with respect to the “gtx_clk”. To remove the delay the simple way is to

change the configuration of the MMCM to produce a phase shift of 0 rather than 90 using the

above said command Code snippet 1.

If multiple AXI Ethernet Subsystem IPs are being used, only one of these IPs will have the

shared logic (MMCM) and the phase shifted clock is input to the others. In this case only one

MMCM has to be reconfigured whereas if the shared logic (MMCM) is included in more than

one AXI Ethernet Subsystem IP, then the above command is applied for each of the MMCMs.

Skew on the PCB traces:

The clock and data traces of Ethernet FMC are length matched between the FMC connector

and the PHYs, hence, the PCB traces add no delay.

Skew in the PHY:

There are two internal delays in the Marvell 88E1510 Ethernet PHY’s design, which can be

enabled to add skew to the incoming RGMII TX clock and the outgoing RGMII RX clock

independently. The delay is always 1.9 ns despite of the link speed. These delays are enabled

or disabled by writing to a particular register in the PHY and depends on whether it is Linux

or a stand-alone application which will be discussed in 6.13.

 We are using AXI Ethernet Subsystem IP cores in the current design which will be

discussed in 6.3. The RGMII TX clock delay is performed in the FPGA fabric by default for

AXI Ethernet Subsystem. Our actual design has four AXI 1G/2.5Gigabit Ethernet Subsystem

IP cores for four Ethernet ports of Ethernet FMC module. An AXI4-Lite bus interface is

provided in the subsystem for a simple connection to the processor core in order to access the

registers. For moving transmit and receive Ethernet data to and from the subsystem 32-bit

AXI4-Stream buses are provided. AXI Direct Memory Access (DMA) IP core, AXI4-Stream

Data FIFO or any other custom logic are to be used with the above bus. In our design, four AXI

DMA IP cores have been used with respect to four AXI 1G/2.5Gigabit Ethernet Subsystem IP

cores as already discussed in previous sections.

28

System Implementation

6.3 AXI 1G/2.5G Ethernet Subsystem IP

An Ethernet PHY device is connected to the PHY side of the subsystem which performs the

BASE-T standard at 1 Gb/s, 100 Mb/s and 10 Mb/s speeds. AXI 1G/2.5Gigabit Ethernet

subsystem IP core has a benefit to use 1000BASE-X, MII, GMII, SGMII, RGMII interfaces to

connect a MAC (media access control) to a PHY (physical-side interface) chip.

In our current design, RGMII, the Reduced Gigabit Media Independent Interface (RGMII)

is being used which has a benefit of Double Data Rate (transfer data on both rising and falling

edges of the clock signal) and provides support for Ethernet operation at 10 Mb/s, 100 Mb/s

and 1 Gb/s speeds.

Ethernet MAC functionality related features are displayed under MAC features tab of

Ethernet Subsystem as shown in the Figure 6.5. Two important parameters are Tx Checksum

offload and Rx Checksum offload. In general, data integrity can be sustained by calculating

and verifying checksum over the TCP and UDP frame data. The protocol stack software

handles the checksum functionality that uses sufficiently more processor power for large

frames at higher Ethernet data rates. An alternative idea is to offload some or whole transmit

checksum generation and receive checksum verification in hardware. By using the TX

Checksum offload and RX Checksum offload parameters, this can be achieved and it results in

higher Ethernet performance by using more FPGA resources while freeing up processor use

for other functions.

In our design, we have full checksum offload of Tx and Rx enabled on the hardware and a

Tx memory size and Rx memory size of maximum value i.e. 32K is set as shown in Figure

6.5.

Figure 6.5 AXI 1 G/2.5 Gigabit Ethernet Subsystem in the current design

29

System Implementation

6.4 AXI Bus

A data bus called AXI is part of ARM AMBA, a family of microcontroller buses called an

“Advanced eXtensible Interface”.

Three types of AXI4 interfaces are defined as follows

 AXI4 for high performance memory-mapped requirements.

 AXI4-Lite for simple and low-throughput memory-mapped communication (to and

from status and control registers).

 AXI4-Stream for streaming data at high speed.

6.5 Gigabit Ethernet subsystems and DMA engine

An in-built dual Gigabit Ethernet controller that supports 10/100/1000 Mb/s EMAC

configurations is present in the Zynq- 7000 AP SoC. An additional soft AXI EMAC controllers

can also be configured in Programmable Logic (PL) subsystem of the Zynq-7000 AP SoC if

more than two Gigabit Ethernet Controllers is the requirement. An example block diagram of

the Zynq-7000 AP SoC with GEMACs is shown in the following Figure 6.6.

Figure 6.6 Gigabit Ethernet Design block diagram using Zynq-7000 AP SoC [12]

30

System Implementation

A brief description of various PS- and PL-based Ethernet implementations is given below.

Among these

 PS-GEM0 is connected to the Marvell PHY through the reduced Gigabit media

independent interface (RGMII) via MIO pins, which is the default setup for the ZC706

board.

 PS Ethernet (GEM1) that is connected to a 1000BASE-X physical interface (PHY) in

PL through an EMIO interface.

 Ethernet implementation as soft logic in PL (MAC) using “AXI 1G/2.5Gigabit Ethernet

subsystem” IP core and connected to the 1000BASE-X physical interface (PHY) and

the GTH transceiver through RGMII (in our current design). Where 1000BASE-X PHY

and the GTH transceiver are a part of the AXI Ethernet core.

On the board, 1000 BASE-X PHY is shared by PS-GEM1 and the PL Ethernet and only one

can be used at a time. PS GEM0, PS GEM1 supports max frame size 1522 bytes. A jumbo

frame size up to 16k can be supported for AXI EMAC in PL which is the main difference

between PS and PL EMACs.

In the current project design, Ethernet implementation as soft logic in PL is chosen and four

tri-mode (10/100/1000 Mb/s) Ethernet MACs are implemented using four AXI Ethernet

subsystem IP cores as soft logics in PL and the AXI Ethernet subsystem IP core has been

discussed in 6.3.

6.6 Application Data path on ZC706

In this section, as an example, Ethernet data movement in the Processing System of Zynq

AP SoC is described before proceeding to describe Ethernet data movement in our actual

design with four ports Ethernet implementation in Programmable Logic under the same section.

31

System Implementation

Figure 6.7 Ethernet Data movement in Zynq-7000 AP SoC [12]

On the Zynq Processing System, the Gigabit Ethernet MAC Controller has three main blocks.

1. MAC Controller

2. FIFO (Packet Buffer) and

3. Ethernet DMA Controller.

Receive Path

The Ethernet DMA controller is connected to the FIFO to give a scatter-gather capability

for packet data storage in a Zynq processing system. Separate transmit and receive lists of

buffer descriptors are used by the Ethernet DMA with every descriptor containing a buffer area

in memory. The Ethernet DMA Controller writes the data received to pre-allocated buffer

descriptor in system memory. Receive buffer queue has the list of these above said buffer

descriptor entries. The Ethernet DMA has the Receive-buffer Queue Pointer register that points

to this data structure on initialization. The Ethernet DMA uses the Receive-buffer Queue

Pointer continuously and sequentially and copies the Ethernet packet received in the Ethernet

FIFO to Memory address specified in the receive buffer queue.

DDR or OCM will contain these Rx Ring buffers and Tx Ring buffers, the speed at which

the instructions execute for packet processing will also improve the overall performance. Thus,

when an Ethernet Packet is received by the MAC, the address in the RX Buffer descriptor is

used by the Ethernet DMA to push the packet buffered in the FIFO (Packet Buffer) on Ethernet

interface to DDR3 memory, via the central interconnects.

32

System Implementation

Data Receive Path

ETH0 ETH0 DMA (32-bit) Central Interconnect DDR3 Memory Controller (64-bit AXI)

Transmit Path

The address in the TX Buffer descriptor is used by the Ethernet DMA in case of transmit to

pull the data from DDR3 Memory, through the central interconnect and finally to the ETH0

Interface.

Data Transmit path

DDR3 Memory Controller (64-bit AXI) Central Interconnect ETH0 DMA (32-bit) ETH0

In the current project, the data receive path and data transmit path are as follows unlike the

above paths because a four port Ethernet FMC module is used.

Figure 6.8 Ethernet Data movement in Zynq-7000 AP SoC with 4-port Ethernet FMC module

Data Receive Path (when Ethernet FMC module is used)

AXI _ETH[X] AXI_ETH[X]_DMA (32-bit) AXI Interconnect / AXI SmartConnect DDR3 Memory Controller (64-bit AXI).

where [X] = 0, 1, 2, 3

Data Transmit Path (when Ethernet FMC module is used)

DDR3 Memory Controller (64-bit AXI) AXI Interconnect / AXI SmartConnect AXI_ETH[X]_DMA (32-bit) AXI_ETH[X].

where [X] = 0, 1, 2, 3

33

System Implementation

6.7 DMA Engine

The DMA (Direct Memory Access) engine is an important part for maximizing performance

in FPGA designs and helps to transfer data from one part of the system to another. As an

example it is used to transfer data from one part of the memory to another. Also, the DMA

engine is used to transfer data from any data producer like an ADC to a memory or from a

memory to any data consumer like DAC. Previously, the processor had handled all data

transfers between devices and memories. Due to increase in complexity and speed of the

systems DMA was invented to free up the processor in dealing with data transfers from one

place to another which removed a bottleneck in efficiency. The data throughput is typically

very high for the processor to deal with so a DMA has an important role in high performance

digital and FPGA systems. In the current design, the AXI Direct Memory Access (AXI DMA)

IP provides high-bandwidth direct memory access between memory and AXI4-Stream-type

target peripherals; in our case the target peripherals are AXI 1G/2.5G Ethernet Subsystem IP

cores.

6.8 AXI DMA and scatter-gather mode

An overview of Scatter Gather, operation of Scatter Gather DMA and AXI DMA in scatter

gather mode during the data acquisition and data transfers from PL to the DRAM in PS and

vice versa are discussed in this section. The following IP core in the current design play an

important role for data transactions to take place to and from the memory and AXI stream

generator in our case AXI 1 G/2.5 G is the source for input and output stream of data in the

implemented design.

6.9 Meaning of Scatter-Gather

If we have a data stream, which can be anything like a stream of Ethernet packets, a stream

of packets over USB, a stream of packets over a PCI Express link or a custom interface

connected to an A2D i.e. let data is entering the system and this data has to be processed and

stored somewhere in the system. If the data has to be stored in the DRAM memory of our

system, a set of blocks are allocated on the DRAM memory and the incoming data has to be

arranged in a set of blocks as shown in the Figure 6.9. These blocks are not necessary to be

one after another but they can be distributed across the physical memory. A stream of data

enters the system and it scatters between different locations or physical addresses in the system.

34

System Implementation

The destination of all these packets may not be necessarily the DRAM but each of the packets

may go to the different locations in the system. In the same manner, in the reverse direction

suppose that we have different amounts of data and each amount is located at different physical

addresses in the system memory and a stream of data is to be created out of these amounts of

data at different locations. So, the DMA engine or the DRAM controller is responsible for

reading and gathering all these amounts of data and putting them into a unified or unique stream

of data. In our case these are Ethernet packets containing the data from the detector modules

of the phenoPET project.

Figure 6.9 Example for scattering and gathering of data stream

6.10 Operation of Scatter-Gather DMA: Register mode

Previously the Scatter-Gather (SG) has been explained, here the operation will be explained.

For each packet from the data stream entering the DMA engine CPU will define the transfer

task which specifies where the packet should go. The DMA engine receives the transfer task

and performs the transfer and as soon as it finishes the transfer, an interrupt is generated by the

DMA engine to the CPU and the CPU defines and sends next transfer task to the DMA engine.

In the reverse direction, same thing is true. There is some data stored in the physical address

range of the system and a set of packets are to be produced and for each read and generation of

the packets, the CPU defines from which address of the system the packet should be read and

how much amount of data the DMA engine should read. As soon as the DMA engine finishes

one transfer task the CPU defines a new transfer task. The CPU will receive an interrupt for

35

System Implementation

every transfer task and it should respond to the interrupt giving the next transfer task. The better

way is explained in the next section.

Figure 6.10 Operation of DMA engine and buffer descriptors in register mode

6.11 Operation of DMA: SG Mode

The CPU defines all of the required transfer tasks at one point and it copies all of these

transfer tasks into memory. When the DMA engine receives the data or when it wants to read

the data from the physical addresses to produce the output stream, the DMA engine will first

read the transfer tasks one by one and perform data transfer according to the definitions

described in transfer tasks. The DMA engine interrupts the CPU only when all of the transfer

tasks are finished. Thus, CPU instructs the DMA engine to begin the operation and provide

address of the transfer tasks in the block memory and tells the DMA engine the ending address

of final transfer task in the block memory. The CPU for the next set of data transactions will

define a new set of transfer tasks. Each transfer task is called as a descriptor. Each descriptor

is an indicator of an amount of data to be transferred from a source to the destination.

36

System Implementation

Figure 6.11 Operation of DMA engine and buffer descriptors in SG mode

In our current design, we are using AXI DMA in SG mode and an overview of the operation

in SG mode for data transitions is as shown in the Figure 6.12. The heart of our system is the

AXI DMA. This AXI DMA engine is used in SG mode (Scatter-Gather mode) in our design

by connecting the SG mode interface pin to the HP0 register (High Performance port) of

Processing System of Zynq. The AXI slave port of the PS i.e. HP0 is enabled. This AXI slave

port HP0 is used to receive the data from the incoming AXI stream (S_AXIS_S2MM) and to

put the data to the DDR3 (M_AXIS_S2MM). The same interface port is being used to do

reverse operation i.e. to read the data from DDR3 (M_AXIS_MM2S) and put the data over the

outgoing AXI stream (M_AXIS_MM2S). Through the GP0 port, AXI memory mapped master

interface of the Zynq PS, the Stream generator or data source (in our case it is AXI

1G/2.5Gigabit Ethernet Subsystem IP core or 10 Gigabit Ethernet Subsystem) is handled. Here

AXI DMA has two channels, in one channel it is writing data into DRAM memory and in

another channel, it is reading the data from the DRAM memory. The descriptors (transfer tasks)

are stored in the HP0 register of PS.

37

System Implementation

Figure 6.12 Operation of AXI DMA and its role in data transactions

During the design phase there are two important parameters to be changed in the

customization of AXI DMA IP core and these parameters will affect the performance of data

transfer from the PL to the PS for this component. As shown in the Figure 6.13, burst size is

the number of data words we transfer in each read or write transaction. If we look at an AXI

memory mapped connection between one AXI memory mapped master and one AXI memory

mapped slave, at the time of initiating the transaction, the AXI memory mapped master can

indicate the address of the transaction and the amount of data that the master wants to transfer.

Indeed, the master doesn’t need to tell address of every single word of data but master will tell

only the start address to transfer this data and then the burst length helps in indicating how

many words of data have to be transferred. Here in our design we have selected a Max Burst

size of 16, it means that the master will transfer 16 words of data or 32 Bytes of data for every

transaction.

Thus, the data on AXI interface can be transferred in bursts. In one transaction on AXI, N

words can be transferred. Better throughput can be achieved for higher burst size. This

parameter should be set to at least 16. We can set it up to 256 (maximum on AXI4). However

the fact that PS AXI interfaces are AXI3 compliant limits the burst size to 16. Therefore, the

AXI4 burst is split into several AXI3 bursts by the AXI interconnect. So we set the burst size

parameter to 16 in our design.

The width of buffer length register is another parameter that affects the performance of the

data transfer from PL to the PS. Indeed, the AXI DMA has a kind of internal buffer, here we

have selected the width of buffer length as 16, and it means that after transfer of 216 bytes i.e.,

38

System Implementation

65 Kbytes of data, CPU should configure the AXI DMA again, i.e. the CPU is allowed to ask

DMA to perform transfers up to 216 bytes.

Figure 6.13 Customization of AXI DMA IP core

6.12 Zynq PS

A dual-core ARM Cortex-A9 MP Core based processing system (PS) and Xilinx

programmable logic (PL) in a single chip along with the on-chip memory, external memory

interfaces, and an abundant set of IO peripherals are the main features in the Zynq-7000 family

based Xilinx All Programmable SoC architecture. In the current design, the software interface

around the Zynq-7000 is “Processing System 7” IP core. The Processing System (PS) and

Programmable Logic (PL) are integrated in the SoC giving a flexible solution on a single

platform. This core acts like a link between the processing system and programmable logic

besides giving a feature to join other customized and embedded IP cores in the Vivado IP

integrator.

39

System Implementation

6.13 Implementation of Linux on Zynq PS

We can run different types of software on the ARM host of Xilinx All Programmable SoC

such as

1. Bare metal (standalone) application directly executed by ARM cores.

2. Linux OS running on the ARM cores and Linux kernel can handle both cores and can

schedule different processes to different cores.

3. In addition to these, Free BSD can be run on the ARM host or Free BSD or Windows

OS can also be run on the Xilinx Zynq device.

Since our hardware design with four Ethernet ports is ready, next step is to handle the four

ports to receive the data from the detector modules in UDP packets by running UDP application

to receive the packets and the chosen way is to boot Linux on Zynq and writing a software

application that runs on processing system. PetaLinux tools from Xilinx offer Embedded Linux

solution on Xilinx processing systems.

Why use Linux in our project:

If we are using Linux in our system, we will have these features already included

1. Network/File System support.

2. Inter process communication and memory management.

This means two or more programs can exchange data between them and memory

management meant for example, our program may ask some memory from the system

to do something and leave this memory back to other programs.

3. Multithreading (it will use two cores in our Zynq).

4. Device drivers.

Device drivers are special kind of software that make particular hardware available for

our system.

5. Open source code available.

Compiling, porting the kernel and drivers can be challenging because Linux is complex, it

takes time to boot, compared to booting the System on Chip for bare metal application.

40

System Implementation

6.14 Implementation of Linux on Zynq PS using PetaLinux

Hardware contains a lot of parameters and the important information that is used during

software development. These parameters are mostly related to the initialization of the Zynq PS

and with different address ranges, ARM host here can access different components that we

have on the PL. Therefore, an export of hardware is needed in Vivado Design Suite before the

software development. For example, when we want to use the DRAM controller, there are

some set of parameters which are to be initialized before the DRAM controller is used

effectively. When ARM host begins operating, the first thing it should do is, it should program

all of these registers. And a reference to these registers can be found in a Xilinx Technical

reference manual, the final part of the manual contains details of these registers.

Now we have Petalinunx Environment of the Xilinx in which we develop our Linux based

application for our Zynq device. We have set of system configuration information which is

reflecting different address values for different components inside our system and the type of

the IP block present in our design. The set of information that is vital for the software

development in fact specified in the hardware platform specification is exported from the

Vivado environment to the Xilinx Software Development Kit is then being used for configuring

the PetaLinux project.

A simple software application is created on the Linux OS running on the ARM host of the

Zynq and cross compilation is done using the tool set provided by the Xilinx tool. Generated

binary after cross compilation is executed on the ARM host.

After, the PL of the Zynq is programmed and after the bit stream is generated in Vivado as

discussed in the 6.1, development of single Linux system at a time is supported by the

PetaLinux project. Following are the main components in a PetaLinux project

1. First Stage Boot Loader

2. Device tree

3. U-boot

4. Linux kernel

5. Rootfs

The First Stage Boot Loader is responsible for programming the PL part and initializing

the Zynq processor. And this is the first one that loads when we power up the Zynq. It will

copy the Linux kernel into the processor’s SDRAM and initialize the Zynq processor. The

41

System Implementation

Zynq boot process starts with running code inside the Boot ROM, boot medium is selected and

FSBL is quickly loaded. The FSBL is created by Xilinx tools using information from our

hardware project.

The device tree or Flattened Device Tree (FDT) is a data structure that contains byte

coded format data, which is useful to the kernel when booting up. This amount of data is copied

into the known address in the RAM before jumping into the kernel’s entry point. Then it jumps

the kernel’s entry point. For example, in a PC, there are hardcoded initial registers and BIOS

will supply the rest of the information. ARM processors do not have a BIOS, so Device tree is

the opted solution. Thus, device tree is a way to convey the information about the specific

hardware we have added or removed to the kernel so that a right driver is used by the kernel to

handle the hardware. It is a file that describes all the devices and their drivers in the system. In

simple words, Device Trees (DTB files) are used to describe the hardware architecture and

address map to the Linux kernel.

Device tree configuration:

As discussed in 6.6, in handling the delays at the PHY side, it may depend on whether it is

Linux or a stand-alone application. As such device tree is the best chosen way. Since we are

doing a Linux application, to enable or disable the internal clock delays we specify a particular

value for the “phy-mode” parameter in the device tree.

Code snippet 2 Device tree configuration for phy-mode

&axi_ethernet_0 {

 local-mac-address = [00 0a 35 00 01 22];

 phy-handle = <&phy0>;

 xlnx,has-mdio = <0x1>;

 phy-mode = "rgmii";

 mdio { #address-cells = <1>;

 #size-cells = <0>;

 phy0: phy@0 {

 compatible = "marvell,88e1510";

 device_type = "ethernet-phy";

 reg = <0>; }; }; };

42

System Implementation

For each of the Ethernet interfaces (axi_ethernet_0, axi_ethernet_1, axi_ethernet_2 and

axi_ethernet_3) the device tree is scripted in the above said way (Code snippet 2).

To enable or disable the internal clock delays, we specify a particular value for the “phy-

mode” parameter.

Both internal delays DISABLED:

phy-mode = "rgmii";

Both internal delays ENABLED:

phy-mode = "rgmii-id";

Only RX internal delay ENABLED:

phy-mode = "rgmii-rxid";

Only TX internal delay ENABLED:

phy-mode = "rgmii-txid";

U-Boot, is a piece of software commonly used to load Linux into the board.

Linux Kernel is the core of the Linux operating system with complete control over

everything in the system. Kernel.org together with Xilinx additions (BSP and drivers) offer the

Linux kernel for Xilinx Zynq. Linux kernel is the central part of the operating system that links

the hardware with the applications.

Linux Kernel job

On a system, the job of a kernel is to manage all the following demands posed by different

programs asking for resources at the same time:

1. Process management

2. Memory management

3. File systems

4. Device control

5. Network

Code snippet 3

arm-Linux-gnueabihf-gcc multiUDPfinal.c –o multiUDPfinal –pthread

45

System Implementation

FSBL is executed first followed by execution of U-Boot that loads device tree and Linux

kernel into the memory and followed by mounting rootfs. Thus, after the hardware bit stream

and software images have been built, the new PetaLinux platform with the Zynq kernel is

booted using SD card. The Figure 6.16 shows a high level block diagram of the design flow

using Vivado and PetaLinux.

Figure 6.16 Xilinx tools design flow at Implementation level [13]

6.15 Implementation of clustering algorithm in PetaLinux

As discussed in the previous section, the rootfs contains user applications written in C

programming such as "multiUDP4final" added to our rootfs after cross compiling using arm-

Linux-gnueabihf-gcc. The following application is written in C for handling the four Gigabit

Ethernet ports for acquiring data in UDP packets on four Ethernet ports where multi-threading

concept is implemented for four Ethernet ports. And clustering algorithm is written in C

program to process the data acquired from each Ethernet port. (See multiUDP4final program

that has clustering algorithm in 11.1 in appendix)

The Clustering application contains the algorithm required to cluster the data, the algorithm

will run in such a way that it extracts the data from each frame and clusters the data based on

time stamp in a time window of 5 ns and keeps it into a buffer. Later, the data can be sent out

on 10 Gigabit Ethernet port.

Figure 6.17

[14]

47

System Verification

7. System Verification

This study provides a measurement of Ethernet bandwidth utilization versus actual

bandwidth from the stress tests performed on the datagrams. It provides information about the

processor utilization during the tests and also when the user application for data acquisition on

UDP packets and data processing is running.

Maximum no. of frames per second =

(

)

 =

(

)

 =

(

)

 = 81275 ()

Thus, a maximum of 81275 frames per second on 1000 Mbps or 1 Gbps occurs for an

Ethernet size of 1538 Bytes in the Ethernet frame.

Transaction time for each frame = () = 12.3 (

)

Whereas for jumbo Ethernet frame of size 9000 Bytes, the transaction time would be 64 µs.

If a frame transaction of 12.3 µs occurs in an Ethernet network interface, it means that the

software on the Processing System of Zynq has to finish handling and processing of a frame in

12.3 µs and then available to handle the next arriving frame. This time bound execution will

ensure that software is working in relation with the Ethernet hardware. If the software is unable

to handle and process the frame in this time then it is unable to reach the much needed

equilibrium with respect to Ethernet hardware to endure a line rate of 1 Gbps. A backpressure

(during RX) or a starvation (during TX) are created on the hardware. The Ethernet hardware

will overrun and drop the frames from the Ethernet wire because of this backpressure or the

hardware will under-run and the wire is underutilized due to the starvation.

7.1 Solutions for better performance from Ethernet design

Few solutions for better performance of Ethernet have been discussed in 6.11 and 6.3 at

design level. Also, the use of jumbo frames in high data intensive applications will increase the

throughput. The performance is improved by larger frame size by decreasing the no. of

fragments for a given size of data.

48

System Verification

7.2 Solutions for better performance from user space

When Linux kernel/XAPP1082 image is booted on Zynq 7000 AP SoC, following

commands can be applied

1. Configuring the MTU (Maximum Transmission Unit) to jumbo size on both the

server and client.

The size of the largest data unit in network layer that can be communicated in a single

transaction is called Maximum Transmission Unit (MTU).

In other words, MTU relates to the size of the final product from the transport layer after

adding headers and checksum to the payload or data i.e., MTU relates to the data packet in the

network layer before adding source and destination IP addresses in order to convert it into

complete Ethernet frame in the datalink layer. So, if MTU is more, more throughput or data in

a data segment in the transport layer and less number of data packets in the network layer and

so less number of heads and tails appear in the Ethernet frame which implies that more

throughput will fit in it. If MTU is less, then less throughput in the transport layer and more

number of data packets in the network layer and so more heads and tails appear in the Ethernet

frame. Thus, a greater efficiency comes with larger MTU because more user data fits into each

network packet. A larger MTU resulting in fewer packets are processed for the same amount

of data.

Code snippet 6 Rising MTU to 9000 for network interfaces

On server side (on Zynq)

ifconfig eth0 192.168.1.11 netmask 255.255.255.0 up

ifconfig eth0 down

ifconfig eth0 mtu 9000

ifconfig eth0 up

On client side (on the host PC)

ifconfig enp1s0f0 192.168.1.20 netmask 255.255.255.0 up

ifconfig enp1s0f0 down

ifconfig enp1s0f0 mtu 9000
ifconfig enp1s0f0 up

49

System Verification

2. The task set-2 feature is being used in the current project to share the load between

two cores of ARM Cortex A9s when the application is being launched.

3. Configuring Window size for better performance.

4. For better performance, configuring Window size is one of the options. The client’s

receive window on the receiver side and it is the server’s send window i.e. the no.

of bytes, the client would like to receive from the server at one time. Similarly, the

server can tell the client no. of bytes of data it would like to take from the client at

one time and is a server’s receive window and client’s send window. Window size

may drop down to zero dynamically if the receiver is unable to handle the data as

fast as sender is sending the data. Better performance can be achieved with the

larger size of the window.

5. –W option is used to specify the window size while using iPerf3 benchmarking.

7.3 Test Results

These measurements are obtained against iPerf3 client program running on Linux host PC

with Ubuntu 16.04 OS and iPerf3 server program (an application in the rootfs or bin folder of

the image) running on the Zynq PS with petaLinux image.

7.4 Performance tests of Ethernet ports

In the below figures, throughput achieved for actual bandwidths in Mbps and data loss

occurred in percentages are shown. These are obtained during the stress tests performed on the

Gigabit Ethernet ports.

50

System Verification

Figure 7.1 Performance of Port 0

Figure 7.2 Performance of Port 1

Figure 7.6 Figure 7.7

53

System Verification

Figure 7.7 CPU Utilization (%) in parallel test and respective CPU core

Figure 7.8 presents the CPU utilization in percentage and respective CPU core (see % CPU

and CPU) when multiUDP4final application is running on Zynq PS.

Figure 7.8 CPU Utilization (%) for multiUDP4final application

Figure 7.9 presents the CPU utilization in percentage and respective CPU core (see % CPU

and CPU) when multiUDP4final application along with clustering algorithm is running on

Zynq PS.

Figure 7.9 CPU Utilization (%) for multiUDP4final application with cluster algorithm

54

Conclusion

8. Conclusion

The Ethernet port setup for data acquisition of phenoPET detector data is successfully

implemented using the four Gigabit Ethernet ports on the PL of Zynq-7000 XC7Z045-

2FFG900C AP SoC using Vivado Design Suite. Data acquisition and data processing of

PhenoPET data has been implemented successfully on PS of Zynq using Xilinx PetaLinux tool

chain. After data acquisition for phenoPET data is performed on four Ethernet ports over UDP

application written in C, clustering of the data from each port is performed over Zynq PS and

buffered into system memory.

In the current project we achieved almost full Ethernet bandwidths which can be seen under

section 7.3 under System Verification chapter during the stress tests on the multiple Gigabit

Ethernet ports. Percentage utilization of CPU cores of ARM is estimated during the stress test

on each Ethernet port and during the parallel tests on the four Ethernet ports together.

Percentage utilization of CPU cores of ARM during the user application task for UDP and

clustering running on the Zynq Processing System is also done. These results for percentage

utilization of CPU cores of ARM are shown in Figure 7.8 and Figure 7.9 under 7.5 section of

Test Results chapter.

The four Ethernet ports those are validated for UDP with iPerf3 are successfully verified

using the same at different bandwidths in an interval of time. The clustering algorithm which

has been validated for the already available PhenoPET data using MATLAB is successfully

verified after the implementation of the algorithm over the Zynq PS.

The UDP user application handling data acquisition on four Gigabit Ethernet ports written

in the programming language C has been tested for the acquisition of phenoPET data and the

clustering algorithm is also tested by running the algorithm on the Processing System of Zynq

for data processing.

55

Outlook

9. Outlook

The results of CPU percentage utilizations while testing the four Ethernet ports (presented

in 7.5 under Test Results chapter) did not reach our expectation during the stress tests on each

of four Ethernet ports. This seems to be due to the processor being a bottleneck.. The same

implementation might give better performance for percentage utilization of CPU on ZCU102

ultrascale+ MPSoC since it has quad core architecture. If we want very low utilization of ARM

cores in the stress tests, we need complete parallelization of our hardware design, including the

processors on FPGA or more than two ARM cores to handle the multi Gigabit ports.

Due to time constraints, the implementation of 10 Gigabit Ethernet for sending the clustered

data out is an upcoming challenge and can be implemented in future approaches in this project.

The implementation of Ethernet interfaces to send the clustered data out at higher bandwidths

adds fulfilment to the current project resulting in a complete setup for data acquisition and data

processing for phenoPET project. The concept behind this thesis for data acquisition and

processing at higher data rates can be extended for other projects also.

56

References

10. References

[1] Jülich Forschungszentrum, “Jülich Forschungszentrum Press Release: German Plant

Phenotyping Network (DPPN) Launched,” 2013. [Online] [Accessed 12/06/2017].

[2] P. Jahnke, et al., “Design and initial performance of PlanTIS: a high-resolution positron

emission tomograph for plants,” Vols. Physics in Medicine & Biology-55, January 13th 2010.

[3] Jülich Forschungszentrum, www.fz-juelich.de/ibg/ibg-

2/EN/methods_jppc/PET_PlanTIS_phenoPET/_node.html, [Online] [Accessed 12/06/2017].

[4] P. Wüstner, et al., “The Use of USB 3.0 for Fast Data Transfer in a PET Detector” in 19th

IEEE-NPSS Real Time Conference, Nara, 2014.

[5] M. Streun, “phenoPET The Jülich Plant-PET Development”, 63rd Crystal Clear Collaboration

Meeting, Prague, Czech Republic, April 16th 2015.

[6] M. Streun, "phenoPET Time Skew Calibration", Forschungszentrum Jülich, Jülich, Germany,

October 17th 2017.

[7] ZedBoard, zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf,

[Online] [Accessed 12/06/2017].

[8] Xilinx, zedboard.org/product/zedboard, [Online] [Accessed 12/06/2017].

[9] Xilinx, "ZC706 Evaluation Board for the Zynq-7000 XC7Z045 All Programmable SoC", User

Guide, [Online] March 29th, 2016.

[10] Opsero Electronic Design Inc., ethernetfmc.com/wp-content/uploads/2014/10/quad-gige-w-

zedboard-zynq-small-1.jpg, [Online] [Accessed 12/06/2017].

[11] Opsero Electronic Design Inc., ethernetfmc.com/rgmii-interface-timing-considerations,

[Online] [Accessed 12/06/2017].

[12] Anil Kumar, et al., "PS and PL Ethernet Performance and Jumbo Frame Support with PL

Ethernet in the Zynq-7000 AP SoC", Application Note, 2015.

[13] Xilinx, wiki.xilinx.com/PetaLinux+Getting+Started. [Online] [Accessed 12/06/2017].

[14] Bhargav Shah, et al., "PS and PL-Based 1G/10G Ethernet Solution", Application Note, 2017.

[15] M. Streun, et al., “PhenoPET: A dedicated PET scanner for plant research based on digital

SiPMs (DPCs)", Seattle, WA, USA, 2014.

Jül-4406 • Februar 2018

ISSN 0944-2952

