001     844071
005     20210129232808.0
024 7 _ |a 2128/17547
|2 Handle
037 _ _ |a FZJ-2018-01580
100 1 _ |a Gertzen, C. G. W.
|0 P:(DE-HGF)0
|b 0
111 2 _ |a NIC Symposium 2018
|c Jülich
|d 2018-02-22 - 2018-02-23
|w Germany
245 _ _ |a Unravelling the Di- and Oligomerisation Interfaces of the G-Protein Coupled Bile Acid Receptor TGR5 via Integrative Modelling
260 _ _ |a Jülich
|c 2018
|b John von Neumann Institute for Computing
300 _ _ |a 25 - 31
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1519971237_15760
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Publication Series of the John von Neumann Institute for Computing (NIC) NIC Series
|v 49
520 _ _ |a TGR5 is a bile acid- and neurosteroid-sensing G-protein coupled receptor (GPCR), which isalmost ubiquitously expressed throughout the human body. Its physiological functions comprisethe regulation of blood glucose homeostasis, metabolism, and inflammation. Additionally,recent studies show an involvement of TGR5 in the formation of gastric, esophageal, andcholangiocyte cancers as well as in bile acid-induced itch. Hence, TGR5 has been identified asan important drug target. To reduce side effects of drugs targeting GPCRs, the development ofbivalent ligands specifically targeting dimers was shown to be promising. To do so, the knowledgeof the dimerisation interfaces of these GPCRs is paramount. However, the dimerisationinterfaces of TGR5 are not known. Here, we present the identification of the primary dimerisationinterface of TGR5 and possible oligomerisation interfaces. We used Multiparameter ImageFluorescence Spectroscopy (MFIS) Förster Resonance Energy Transfer (FRET) measurementsof fluorescently labelled TGR5 in live cells to measure apparent distances between two TGR5protomers and compared them to distances computed for putative TGR5 dimer models. Asthe linker between TGR5 and the fluorophores contained more than 30 residues, we used all-atommolecular dynamics (MD) simulations to sample the conformational space of the linkerand fluorophore in relation to TGR5. The sampled configurations were reweighted by free energycalculations using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA)method to account for the presence of solvent and a membrane, and a random energy model toestimate the configurational entropy. This allowed us to identify the 1-8 interface of TGR5 asthe primary dimerisation interface, with the 4-5 and 5-6 interfaces as possible oligomerisationsites. This information might be used to develop novel TGR5 ligands with a reduced side-effectprofile.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 1
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 2
536 _ _ |a Antagonists of the TGR5 G-protein complex formation (hdd15_20170501)
|0 G:(DE-Juel1)hdd15_20170501
|c hdd15_20170501
|f Antagonists of the TGR5 G-protein complex formation
|x 3
536 _ _ |a Energetics of the dimerization and G-protein coupling of the bile-acid sensing GPCR TGR5 (hdd15_20160501)
|0 G:(DE-Juel1)hdd15_20160501
|c hdd15_20160501
|f Energetics of the dimerization and G-protein coupling of the bile-acid sensing GPCR TGR5
|x 4
700 1 _ |a Keitel, V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Seidel, C. A. M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gohlke, H.
|0 P:(DE-Juel1)172663
|b 3
|e Corresponding author
|u fzj
787 0 _ |i IsPartOf
|0 FZJ-2018-01527
|t NIC Symposium 2018
856 4 _ |u https://juser.fz-juelich.de/record/844071/files/nic_2018_gertzen.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844071/files/nic_2018_gertzen.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844071/files/nic_2018_gertzen.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844071/files/nic_2018_gertzen.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844071/files/nic_2018_gertzen.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:844071
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 2
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21