000844122 001__ 844122
000844122 005__ 20240712100727.0
000844122 0247_ $$2doi$$a10.5194/acp-18-2985-2018
000844122 0247_ $$2ISSN$$a1680-7316
000844122 0247_ $$2ISSN$$a1680-7324
000844122 0247_ $$2Handle$$a2128/19869
000844122 0247_ $$2WOS$$aWOS:000426556500005
000844122 0247_ $$2altmetric$$aaltmetric:33811861
000844122 037__ $$aFZJ-2018-01597
000844122 082__ $$a550
000844122 1001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b0$$eCorresponding author
000844122 245__ $$aThe maintenance of elevated active chlorine levels in the Antarctic lower stratosphere through HCl null cycles
000844122 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000844122 3367_ $$2DRIVER$$aarticle
000844122 3367_ $$2DataCite$$aOutput Types/Journal article
000844122 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1540444971_4620
000844122 3367_ $$2BibTeX$$aARTICLE
000844122 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844122 3367_ $$00$$2EndNote$$aJournal Article
000844122 520__ $$aThe Antarctic ozone hole arises from ozone destruction driven by elevated levels of ozone destroying ("active") chlorine in Antarctic spring. These elevated levels of active chlorine have to be formed first and then maintained throughout the period of ozone destruction. It is a matter of debate how this maintenance of active chlorine is brought about in Antarctic spring, when the rate of formation of HCl (considered to be the main chlorine deactivation mechanism in Antarctica) is extremely high. Here we show that in the heart of the ozone hole (16–18km or 85–55hPa, in the core of the vortex), high levels of active chlorine are maintained by effective chemical cycles (referred to as HCl null cycles hereafter). In these cycles, the formation of HCl is balanced by immediate reactivation, i.e. by immediate reformation of active chlorine. Under these conditions, polar stratospheric clouds sequester HNO3 and thereby cause NO2 concentrations to be low. These HCl null cycles allow active chlorine levels to be maintained in the Antarctic lower stratosphere and thus rapid ozone destruction to occur. For the observed almost complete activation of stratospheric chlorine in the lower stratosphere, the heterogeneous reaction HCl + HOCl is essential; the production of HOCl occurs via HO2 + ClO, with the HO2 resulting from CH2O photolysis. These results are important for assessing the impact of changes of the future stratospheric composition on the recovery of the ozone hole. Our simulations indicate that, in the lower stratosphere, future increased methane concentrations will not lead to enhanced chlorine deactivation (through the reaction CH4 + Cl ⟶ HCl + CH3) and that extreme ozone destruction to levels below ≈ 0.1ppm will occur until mid-century.
000844122 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000844122 588__ $$aDataset connected to CrossRef
000844122 7001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b1
000844122 7001_ $$0P:(DE-Juel1)166571$$aZafar, Abdul Mannan$$b2
000844122 7001_ $$0P:(DE-Juel1)169568$$aRobrecht, Sabine$$b3$$ufzj
000844122 7001_ $$0P:(DE-HGF)0$$aLehmann, Ralph$$b4
000844122 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-2985-2018$$gVol. 18, no. 4, p. 2985 - 2997$$n4$$p2985 - 2997$$tAtmospheric chemistry and physics$$v18$$x1680-7324$$y2018
000844122 8564_ $$uhttps://juser.fz-juelich.de/record/844122/files/Mueller2018_etal_acp.pdf$$yOpenAccess
000844122 8564_ $$uhttps://juser.fz-juelich.de/record/844122/files/Mueller2018_etal_acp.gif?subformat=icon$$xicon$$yOpenAccess
000844122 8564_ $$uhttps://juser.fz-juelich.de/record/844122/files/Mueller2018_etal_acp.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000844122 8564_ $$uhttps://juser.fz-juelich.de/record/844122/files/Mueller2018_etal_acp.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000844122 8564_ $$uhttps://juser.fz-juelich.de/record/844122/files/Mueller2018_etal_acp.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000844122 8564_ $$uhttps://juser.fz-juelich.de/record/844122/files/Mueller2018_etal_acp.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844122 8767_ $$8Helmholtz-PUC-2018-12$$92018-04-04$$d2018-04-04$$eAPC$$jZahlung erfolgt$$pacp-2017-833
000844122 909CO $$ooai:juser.fz-juelich.de:844122$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000844122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b0$$kFZJ
000844122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b1$$kFZJ
000844122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169568$$aForschungszentrum Jülich$$b3$$kFZJ
000844122 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000844122 9141_ $$y2018
000844122 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844122 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000844122 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844122 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000844122 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000844122 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000844122 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844122 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844122 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844122 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844122 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000844122 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844122 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844122 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844122 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000844122 9801_ $$aAPC
000844122 9801_ $$aFullTexts
000844122 980__ $$ajournal
000844122 980__ $$aVDB
000844122 980__ $$aUNRESTRICTED
000844122 980__ $$aI:(DE-Juel1)IEK-7-20101013
000844122 980__ $$aAPC
000844122 981__ $$aI:(DE-Juel1)ICE-4-20101013