000844132 001__ 844132
000844132 005__ 20210129232813.0
000844132 0247_ $$2Handle$$a2128/17567
000844132 037__ $$aFZJ-2018-01598
000844132 041__ $$aEnglish
000844132 1001_ $$0P:(DE-HGF)0$$aSteinigeweg, R.$$b0
000844132 1112_ $$aNIC Symposium 2018$$cJülich$$d2018-02-22 - 2018-02-23$$wGermany
000844132 245__ $$aReal-time broadening of nonequilibrium density profiles and the role of the specific initial-state realization
000844132 260__ $$c2018
000844132 3367_ $$033$$2EndNote$$aConference Paper
000844132 3367_ $$2BibTeX$$aINPROCEEDINGS
000844132 3367_ $$2DRIVER$$aconferenceObject
000844132 3367_ $$2ORCID$$aCONFERENCE_POSTER
000844132 3367_ $$2DataCite$$aOutput Types/Conference Poster
000844132 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1520317104_21024$$xOther
000844132 520__ $$aThe real-time broadening of density profiles starting from nonequilibrium states is at the center of transport in condensed-matter systems and dynamics in ultracold atomic gases. Initial profiles close to equilibrium are expected to evolve according to the linear response, e.g., as given by the current correlator evaluated exactly at equilibrium. Significantly off equilibrium, the linear response is expected to break down and even a description in terms of canonical ensembles is questionable.We unveil that single pure states with density profiles of maximum amplitude yield a broadening in perfect agreement with the linear response, if the structure of these states involves randomness in terms of decoherent off-diagonal density-matrix elements. While these states allow for spin diffusion in the XXZ spin-1/2 chain at large exchange anisotropies, coherences yield entirely different behavior.
000844132 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000844132 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1$$eCorresponding author$$ufzj
000844132 7001_ $$0P:(DE-HGF)0$$aSchmidtke, D.$$b2
000844132 7001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b3
000844132 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b4$$ufzj
000844132 7001_ $$0P:(DE-HGF)0$$aGemmer, J.$$b5
000844132 8564_ $$uhttps://juser.fz-juelich.de/record/844132/files/Nicsymposiumposter_Jin.pdf$$yOpenAccess
000844132 8564_ $$uhttps://juser.fz-juelich.de/record/844132/files/Nicsymposiumposter_Jin.gif?subformat=icon$$xicon$$yOpenAccess
000844132 8564_ $$uhttps://juser.fz-juelich.de/record/844132/files/Nicsymposiumposter_Jin.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000844132 8564_ $$uhttps://juser.fz-juelich.de/record/844132/files/Nicsymposiumposter_Jin.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000844132 8564_ $$uhttps://juser.fz-juelich.de/record/844132/files/Nicsymposiumposter_Jin.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000844132 8564_ $$uhttps://juser.fz-juelich.de/record/844132/files/Nicsymposiumposter_Jin.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844132 909CO $$ooai:juser.fz-juelich.de:844132$$pdriver$$pVDB$$popen_access$$popenaire
000844132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
000844132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b4$$kFZJ
000844132 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000844132 9141_ $$y2018
000844132 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844132 920__ $$lyes
000844132 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000844132 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000844132 980__ $$aposter
000844132 980__ $$aVDB
000844132 980__ $$aUNRESTRICTED
000844132 980__ $$aI:(DE-Juel1)JSC-20090406
000844132 980__ $$aI:(DE-82)080012_20140620
000844132 9801_ $$aFullTexts