001     844146
005     20210129232816.0
024 7 _ |a 2128/17569
|2 Handle
037 _ _ |a FZJ-2018-01612
041 _ _ |a English
100 1 _ |a Willsch, Dennis
|0 P:(DE-Juel1)167542
|b 0
|e Corresponding author
|u fzj
111 2 _ |a NIC Symposium 2018
|c Jülich
|d 2018-02-22 - 2018-02-23
|w Germany
245 _ _ |a Error analysis of gate-based quantum computers with transmon qubits
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1520317649_21022
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Over the past decades, tremendous effort has gone into building a universal quantum computer. In theory, such a device can solve certain problems such as factoring exponentially faster than digital computers. The leading technological prototypes are based on superconducting circuits and contain about 10-50 qubits. Controlling these fragile systems requires an enormous amount of precision, posing a difficult challenge for the experimentalists. We study such quantum systems in detail by solving the time-dependent Schrödinger equation for a generic model Hamiltonian. For this purpose, we have developed efficient product-formula algorithms that are tailored to key features of the model Hamiltonian. This allows us to simulate each individual voltage pulse that is used in experiments to realize a certain quantum gate, as dictated by the computational model of a quantum computer. By optimizing the pulse parameters, we find that even in the ideal case, the best pulses still contain undesirable errors in the realization of the intended quantum gate. The common gate metrics measured and reported in experiments or computed in theory are shown to provide insufficient practical information about the significance of these errors.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
700 1 _ |a Nocon, Madita
|0 P:(DE-Juel1)167543
|b 1
|u fzj
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 2
|u fzj
700 1 _ |a De Raedt, Hans
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 4
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/844146/files/poster.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/844146/files/poster.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/844146/files/poster.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/844146/files/poster.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/844146/files/poster.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/844146/files/poster.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:844146
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167543
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144355
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21