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Gate-based quantum computing
A quantum computer contains a set of two-level systems called 
qubits. Each qubit can be in a complex superposition of the 
computational states 0 and 1. At each step in the 
computation, gates transform the qubits. 

Examples for single-qubit gates:

The computation can be expressed as a quantum circuit:

At the end, a measurement of the qubits produces a bit string 
by projecting each qubit to 0 or 1.

Transmon qubit architecture
The architecture of the transmon quantum computer is defined by the system Hamiltonian

Gate-error metrics
Projection of the time-evolution operator () on the qubit 
subspace gives the matrix . Ideally, this matrix should be 
equal to the unitary quantum gate .

Average gate fidelity [4]

Diamond error rate [5]

Unitarity [6]

Conclusion: The gate metrics of the optimized pulses are nearly perfect and agree with experimental achievements [3]. However, in repeated applications or 
actual quantum circuits, the gates suffer from systematic errors. These can be observed in experiments [7,8]. Although the gate fidelity and other metrics 
indicate them, they cannot replace the information of how well and how often a certain gate may be used in a quantum computation [9].

Simulation method

The CNOT gate is implemented in three different 
versions based on cross-resonance (CR) pulses [3].

The qubits are given by the lowest eigenstates of 
Cooper Pair Boxes (CPBs) in the transmon regime [1]:

One way of coupling transmons is based on a trans-
mission line resonator, modeled as a harmonic oscillator:

Another way of coupling transmons is based on a 
capacitive electrostatic interaction:

Quantum gates are implemented 
by microwave voltage pulses:

The two-qubit controlled-NOT 
(CNOT) gate is a conditional 
operation to entangle two qubits. 
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The time-dependent Schrödinger 
equation (TDSE) 

is solved numerically using a Suzuki-
Trotter product-formula algorithm 
[2] for the time-evolution operator:

The goal is to find a pulse () so 

that () implements a certain 
quantum gate on the qubits. We use 
the Nelder-Mead algorithm to 
optimize the parameters of the pulse.


