001     844156
005     20210129232818.0
024 7 _ |a 10.1016/j.envpol.2018.02.025
|2 doi
024 7 _ |a 0013-9327
|2 ISSN
024 7 _ |a 0269-7491
|2 ISSN
024 7 _ |a 1873-6424
|2 ISSN
024 7 _ |a 1878-2450
|2 ISSN
024 7 _ |a pmid:29449114
|2 pmid
024 7 _ |a WOS:000434754600108
|2 WOS
037 _ _ |a FZJ-2018-01622
082 _ _ |a 333.7
100 1 _ |a Makselon, Joanna
|0 P:(DE-Juel1)161259
|b 0
|e Corresponding author
245 _ _ |a Role of rain intensity and soil colloids in the retention of surfactant-stabilized silver nanoparticles in soil
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1526366568_6672
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Undisturbed outdoor lysimeters containing arable loamy sand soil were used to examine the influence of either heavy rain events (high frequency of high rain intensity), steady rain (continuous rainfall of low rain intensity), and natural rainfall on the transport and retention of surfactant-stabilized silver nanoparticles (AgNP). In addition, the AgNP–soil associations within the Ap horizon were analyzed by means of particle-size fractionation, asymmetrical flow field-flow fractionation coupled with UV/Vis-detection and inductively coupled plasma mass spectrometer (AF4-UV/Vis-ICP-MS), and transmission electron microscopy coupled to an energy-dispersive X-ray (TEM-EDX) analyzer. The results showed that AgNP breakthrough for all rain events was less than 0.1% of the total AgNP mass applied, highlighting that nearly all AgNP were retained in the soil. Heavy rain treatment and natural rainfall revealed enhanced AgNP transport within the Ap horizon, which was attributed to the high pore water flow velocities and to the mobilization of AgNP–soil colloid associations. Particle-size fractionation of the soil revealed that AgNP were present in each size fraction and therefore indicated strong associations between AgNP and soil. In particular, water-dispersible colloids (WDC) in the size range of 0.45–0.1 μm were found to exhibit high potential for AgNP attachment. The AF4-UV/Vis-ICP-MS and TEM-EDX analyses of the WDC fraction confirmed that AgNP were persistent in soil and associated to soil colloids (mainly composed of Al, Fe, Si, and organic matter). These results confirm the particularly important role of soil colloids in the retention and remobilization of AgNP in soil. Furthermore, AF4-UV/Vis-ICP-MS results indicated the presence of single, homo-aggregated, and small AgNP probably due to dissolution.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Siebers, Nina
|0 P:(DE-Juel1)164361
|b 1
|u fzj
700 1 _ |a Meier, Florian
|0 0000-0003-1395-4877
|b 2
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
|u fzj
700 1 _ |a Klumpp, Erwin
|0 P:(DE-Juel1)129484
|b 4
|u fzj
773 _ _ |a 10.1016/j.envpol.2018.02.025
|g p. S0269749117346201
|0 PERI:(DE-600)2013037-5
|p 1027-1034
|t Environmental pollution
|v 238
|y 2018
|x 0269-7491
856 4 _ |u https://juser.fz-juelich.de/record/844156/files/1-s2.0-S0269749117346201-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844156/files/1-s2.0-S0269749117346201-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844156/files/1-s2.0-S0269749117346201-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844156/files/1-s2.0-S0269749117346201-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844156/files/1-s2.0-S0269749117346201-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844156/files/1-s2.0-S0269749117346201-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844156
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161259
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164361
910 1 _ |a Postnova Analytics GmbH, Germany
|0 I:(DE-HGF)0
|b 2
|6 0000-0003-1395-4877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129484
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON POLLUT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21