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Manybrain regionshavebeendefined, buta comprehensive formalization ofeach

region’s function in relation to human behavior is still lacking. Current knowledge

comes from various fields, which have diverse conceptions of ‘functions’. We

briefly review thesefields and outline how the heterogeneity of associations could

be harnessed to disclose the computational function of any region. Aggregating

activation data from neuroimaging studies allows us to characterize the func-

tional engagement of a region across a range of experimental conditions. Fur-

thermore, large-sample data can disclose covariation between brain region

features and ecological behavioral phenotyping. Combining these two

approaches opens a new perspective to determine the behavioral associations

of a brain region, and hence its function and broader role within large-scale

functional networks.

What Does Any Part of the Brain Do?

Ever since humans have scientifically investigated the mind, understanding how it is orga-

nized at the level of its biological substrate (i.e., the brain) has remained challenging. For over a

century, great progress has been made in mapping the human brain (based on various

characteristics), leading to a rapidly expanding number of parcellation schemes and atlases

detailing the organization of cortical areas and modules [1]. Several studies have demon-

strated that the structural segregation of the cerebral cortex into different areas (distinguish-

able based on their biological properties, such as molecular, cellular, or fiber architecture

[2,3]) is closely related to its functional segregation [4] and, in turn, its organization into

functional networks [5].

Current conceptualizations of brain function as a Bayesian machine, in which brain areas are

seen as connected and relatively specialized computational units, are in contrast with the

actual available knowledge about functional specialization. Studies over the past century

show that the understanding of brain–behavior relationships has been an interdisciplinary

endeavor, resulting in rich and heterogeneous patterns of behavioral functions for many brain

regions. After reviewing the most common approaches that have contributed to this

endeavor, we propose that assessing the relative functional specialization of brain regions

requires a critical change in viewpoint, wherein the a priori defined construct is the brain

region and the unknowns are the behavioral functions associated with it. In that perspective,

recent advances in data aggregation offer novel opportunities for a systematic characteriza-

tion of brain regions across a range of behavioral conditions and phenotypical features. Such

an integrative approach could bring us to a pivotal stage in the history of brain mapping and

cognitive neuroscience, in which we lift the conceptual fog that has clouded structure–

function relationships in the brain, and focus on future formal conceptualizations of functional

segregation and integration.

Highlights

While it is largely accepted that the

brain is topographically organized into

distinct areas that are integrated into

networks, the unique contribution of

each area to behavior is yet to be

elucidated.

Diverse lines of research using different

approaches have contributed to

numerous behavioral associations for

any brain area.

Emerging databases of task-based

activation data offer the possibility of

characterizing the engagement of

brain regions across a broad range

of experimental behavioral conditions.

New large samples of both imaging

and phenotypical data provide an

opportunity to complement the activa-

tion pattern by examining cross-sub-

ject associations between imaging-

derived neurobiological markers and

ecological behavioral characteristics.
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Glossary

Ecological validity: an

epistemological concept referring to

the quality of the methods, materials,

and settings of a study used to

reproduce the examined real-life

phenomena.

Epistemological: referring to the

study of the nature and grounds of

knowledge, especially regarding

limits and validity.

Internal validity: a quality criterion

for study designs that indicates the

degree to which observed effects in

some dependent variable can be

assumed to be caused by the

experimental manipulation; typically

highest in randomized experiments

and lowest, or absent, in correlative

designs.

fMRI: can be used to measure

hemodynamic changes related to

neural activity during a particular

mental task. Oxyhemoglobin and

deoxyhemoglobin have different

magnetic properties, which can be

captured with an fMRI scanner.

During mental activity, the ratio

between oxyhemoglobin and

deoxyhemoglobin is modified,

allowing inference about the region

of the brain in which neural activity

changes during a particular mental

task.

MRI: a technique of imaging body

tissues (such as brain tissues) and

physiological processes. It uses

magnetic fields, radio waves, and

field gradients. As different tissues

have different magnetic properties,

structural MRI can be used to

generate an anatomical image of the

brain that differentiates gray matter,

white matter, and cerebro-spinal

fluid.

Ontology: an explicit specification of

the conceptual entities that are

postulated by a theory. A formal

ontology specifies the structure of

the theory in terms of the elementary

entities and their conceptual

relationships.

Positron emission tomography

(PET): a technique that measures

physiological function by detecting

blood flow and metabolism. It is

based on the detection of

radioactivity emitted after a

radioactive tracer has been injected

into the body. It can therefore be

used to examine blood flow and

oxygen consumption in different

Brain Areas as Connected Computational Units

The first theories regarding functional specialization of brain areas (which later led to the

concept of functional segregation) had already been proposed in the early 19th century by

Gall (whose view was later referred to as ‘phrenology’) [6]. However, many ‘functions’ that were

associated with certain parts of the outer skull would not be considered as functions from a

modern point of view (with the exception of language). The following decades were enlivened by

debates on localizationism versus connectionism (for a detailed review, see [7]). The pioneering

work performed by Paul Broca and Carl Wernicke in the 19th century evidenced specific

behavioral impairment following focal brain lesions, but, at the same time, it was also realized

that the attribution of a specific function to a cortical area is related to its anatomical connectivity

with distant brain regions. This was illustrated by Wernicke, who introduced the first network

view for language comprehension and production [8].

Following this view, the concept of disconnection syndromes refuted strict localizationism as a

complete or sufficient account of cortical organization [7]. Accordingly, the human brain

mapping field currently relies on the assumption that the brain is governed by two fundamental

principles of functional organization: segregation and integration [7,9,10]. The former refers to

the fact that the cerebral cortex is not a homogeneous entity but can be subdivided into

regionally distinct modules (cortical areas or subcortical nuclei), based on functional and

structural properties [11,12]. The latter emphasizes that no brain region is by itself sufficient

to perform a particular cognitive, sensory, or motor function. Rather, all mental capacities rely

on a dynamic interplay and exchange of information between different regions [13,14].

Importantly, these principles (functional segregation and integration) do not contradict each

other, since integration can be conceptualized as interaction between relatively specialized

regions, each subserving a distinct process [9,15]. Accordingly, each area can perform a limited

range of functions, but the concrete behavioral output depends on which inputs have been

processed (from afferent connectivity) and which signal is sent to which other areas (based on

efferent connectivity). In this ‘intrinsic’ and ‘connectivity’-based functional specialization of brain

areas (developed in [16]), these latter can be conceptualized as relatively specialized compu-

tational units, the observed behavioral effects of which depend on the coactivity (and thus

information sent and received) of other areas.

Considering brain areas as computational units raises the question of the mechanism of the

computation, or basically the question of ‘what does the brain do and how?’ A relatively well-

acknowledged view addressing this question is that the brain works as a Bayesian machine

[17], computing probabilities that minimize uncertainty [18] and support decision making [19].

This view has been successful, for instance, in explaining perceptual processes as integrative

processing of probabilistic distributions [20]. It has also been adapted to explain higher aspects

of cognition, such as human optimistic bias [21] and, relatedly, the role of the lateral prefrontal

cortex in updating beliefs [22].

Importantly, this ‘Bayesian brain’ view entails an important shift in the conceptualization of

‘functions’. Traditionally, assigning functions to brain regions has mainly been based on

conceptualizations of functions from many different disciplines that are interested in the study

of the mind and behavior. Here we use the term ‘behavioral function’ to refer to these primarily

psychology-related constructs. ‘Episodic memory’, ‘working memory’, ‘motor preparation’,

‘visual attention’, ‘memory consolidation’, ‘speech production’, ‘perspective taking’, and

‘emotional regulation’ are a few examples of these behavioral functions. However, the Bayesian

brain hypothesis entails a different conceptualization of the functional specialization of brain
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regions. Specifically, ‘function’ refers to a computational operation performed by a given region,

which contributes to the observed behavioral output. To incorporate this viewpoint, we use the

term ‘operation-function’.

In the following sections, we first illustrate the heterogeneity of behavioral functions that have

been assigned to brain regions, according to previous approaches; these approaches are then

reviewed. We then consider how functional specialization from such conceptualizations might

be used in conjunction with recent advances in data aggregation methods to search for the

core operation-function of brain regions.

Functional Specializations as Polyhedra

For any brain region, we can think of many different behavioral functions, based on the

perspective from which we consider this brain region. In practice, most of these behavioral

functions can somehow be related to one another and seem to comprise a core computational

function (i.e., an operation-function) that grounds all behavioral associations but remains latent

and is not directly observed. In other words, our current knowledge of the functional speciali-

zation of a given brain region can be conceptualized as a polyhedron with its many sides (i.e.,

many behavioral functions), the sum of which can only be appreciated by investigation from

many different perspectives, but whose core center remains intangible.

This conceptual polyhedron can be illustrated by one of the most studied parts of the brain, the

hippocampus. It has been associated with different memory functions, such as episodic [23],

autobiographical [24], explicit [25], contextual [26], or associative [27] memory, and also with

several ‘processes’, including declarative [28] or incremental learning [29], recollection [30],

encoding [31], retention [32], consolidation [33], novelty detection [34], binding [35], compar-

ator [36], mismatch detection [37], pattern separation [38], and inferential processes [39].

Furthermore, the hippocampus has been associated with particular ‘behavioral domains’ and

‘tasks’ such as spatial navigation [40], spatial discrimination [41], scene imagination [42],

prospection [43], and allocentric representation [44]. Finally, it has been assumed that the

hippocampus supports more complex behavioral constructs, such as creative thinking or

flexible cognition [45].

Howhas such a ‘functional polyhedron’ been created?Actually, thehippocampus, like many brain

regions, is a complex structure that can be engaged in many different behavioral functions,

according to the context and to its interaction with other brain regions. Accordingly, different fields

have used different approaches and conceptual frameworks to infer brain–behavior relationships,

capturing one of its many behavioral associations. That is, ascribing behavioral functions to a brain

region has been a multidisciplinary endeavor, resulting in multiple ontologies (Box 1) and different

levels of description of mental functions, ranging from high-level behavioral descriptions to

individual tasks and isolated processes hypothesized by cognitive models [46]. Generally, when

these constructs have been related to the brain, the discipline has shaped the ontologies, and the

inferential approach has driven the level of description, producing heterogeneous conceptual

associations for any brain region. In the following sections, we review the inferential approaches

used in those different disciplines, and their concepts, advantages, and drawbacks.

How Have Functions of Brain Regions Been Inferred?

The Lesion-Deficit Approach

One of the first approaches linking brain and behavior was the lesion-deficit approach.

Following the pioneering work of Broca and Wernicke in the 19th century, one of the most

parts of the brain during a mental

task.

Transcranial direct current

stimulation: a technique of

neurostimulation in which electrodes

are placed on the head of a

participant to induce currents. It

changes neuron excitability by

modifying the membrane polarization

potential.

Transcranial magnetic stimulation

(TMS): a technique used to stimulate

the brain locally. A magnetic coil is

placed close to the scalp (without

physical contact with the head) to

induce currents, which change the

polarization of the neurons in the

area under the coil. The neural effect

of TMS depends on the frequency of

the stimulation. It can be excitatory

or inhibitory.
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famous examples in the 20th century was the study of patient H.M. by Brenda Milner and

colleagues. This patient had medial temporal lobe resection (mainly the hippocampus), which

resulted in severe anterograde memory deficits [47]. This led to the inference that the hippo-

campus plays a crucial role in the acquisition of new memories. As exemplified in this famous

study, a ‘behavioral function’ is thus inferred from an observed ‘dysfunction’ (here anterograde

amnesia) following restricted brain damage or loss. The main strength of this approach is the

causal nature of the relationship between the two studied variables (brain and behavior). That is,

observing a dysfunction following damage to a specific brain region allows one to infer a crucial

role of this region in the respective behavioral function within the intact brain. This strength goes

with the epistemological (see Glossary) limitation of being only quasi-experimental, as an

experimental approach supporting causality implies the ability to demonstrate that alternative

explanations have been eliminated. Specifically, in the lesion-dysfunction approach, the effect

of prelesion factors (e.g., subclinical strokes and/or cognitive impairment) cannot be ruled out.

In other words, the behavioral deficit (i.e., the effect on the dependent variable) could (partly) be

driven by factors other than the lesion per se, thereby threatening internal validity [48].

Furthermore, at the brain level, several issues arising from the spatially structured distribution of

lesions [49] and the influence of neuroplasticity (functional and structural adaptation to damage)

can limit the inferential power of lesion-deficit mapping (Box 2). Despite these limitations, this

approach has shaped many of the most pre-eminent assumptions about functional speciali-

zation, and is still considered a benchmark (due to its causal mechanism) against which findings

obtained from other approaches are discussed [49].

The Stimulation Approach

A more recent, experimental approach, mirroring the lesion-deficit approach but applied to

healthy participants, is the study of behavioral consequences of virtual lesions created with

brain stimulation techniques. In particular, brain activity can be locally impaired with

Box 1. Matching Brain Organization and Cognitive Ontologies

One important issue in the study of brain–behavior relationships is whether currently available ontologies and

taxonomies can be mapped onto the brain. That is, if we could capture the exact topographical organization of

the brain, it seems unlikely that we would find concepts at the current level of description of behavior that could be

mapped to the identified biological units. It seems likely that the behavioral structure as it is implemented (i.e., ‘coded’) in

the brain does not fit with past and contemporary cognitive theories of behavioral processes.

As reviewed in [16], cognitive scientists have traditionally formalized the components of behavioral function using

behavioral studies of normal and neurologically impaired individuals. As further reviewed in [77,93], the results of

activation studies have challenged the classic models, as they have evidenced overlap between neural systems

activated by tasks that share no known cognitive components. In agreement with a previous suggestion of system-

atically assigning labels that encompass the operations that each area performs [8], we propose to build a systematic

ontology with a bottom-up perspective (starting from the biological substrate: the brain).

One challenge in the future will indeed be to integrate concepts and data from disparate brain science disciplines within

a unified framework of brain biology [94]. Following up that perspective, building neurocognitive models (i.e., models

combining cognitive and anatomical models) of normal functioning and pathology relies on the organization of the

cognitive components into a single framework [16]. Such a theoretical position clearly implies that biological evidence

should drive the revision of cognitive theories, provided that the new conceptualization derived from brain–behavior data

has been robustly tested.

In addition to these theoretical considerations, one should also consider the clinical utility as a ‘quality marker’ for

psychological ontologies. That is, a behavioral/cognitive taxonomy that is in agreement with brain organization should, in

principle, also help researchers to understand, diagnose, or classify neurocognitive pathologies. Thus, in the future,

assigning operation-function to brain regions should go hand in hand with the evolution of formal cognitive taxonomies,

which in turn should benefit the understanding of neurocognitive pathology.
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transcranial magnetic stimulation (TMS), transcranial direct current stimulation, or

transcranial alternating current stimulation. Likewise, the opposite effect (i.e., facilitation by

increasing cortical excitability to enhance behavioral performance) is also possible, depending

on the protocol [50,51]. These approaches test cause–effect relationships by experimentally

manipulating local brain activity and examining its effects on behavior [52]. While representing a

powerful experimental approach, internal validity can also be limited by the influence of

individual cortical geometry and the relative lack of focality, as well as by the limited range

of regions that can be targeted (Box 2). At the behavioral level, in contrast to the lesion-deficit

approach, stimulation approaches do not tap into everyday behavior in natural settings. For the

sake of experimental control and constraints of the laboratory setting needed for stimulus

delivery, behavioral functions are usually operationalized from cognitive models (e.g., ‘memory

recall’ [53]), and inference is made on isolated behavioral parameters such as reaction time.

Thus, compared with the lesion-deficit approach, experimental brain stimulation can offer

higher internal validity, but has limited ecological validity.

The Activation Approach

In recent decades, neuroimaging techniques such as positron emission tomography (PET)

and fMRI have produced a rapid growth in the study of brain–behavior relationships [54], by

revealing localizations of brain activity changes induced by mental operations. fMRI quickly

became preferred over PET for mapping task-evoked activity because it has a better spatial and

temporal resolution [55]; and can hence localize activity changes during specific mental events,

such as successful memory encoding [56]. With this technological progress, cognitive psy-

chologists gained a new tool to test and refine cognitive models and theories [57]. In this

particular framework, the activation approach can be considered as experimental because it

allows the researcher to freely manipulate an independent variable (behavioral condition) and

observe its effect on the dependent variable (brain activation). For example, fMRI can provide

support for dual-process cognitive models (such as recollection versus familiarity) by demon-

strating that the two processes evoke distinct patterns of activity. However, addressing such

questions with fMRI requires well-controlled designs, using two conditions which differ only in

Box 2. Real and Virtual Lesions: Strong but Complicated Evidence

Localized brain lesions and stimulation approaches producing ‘virtual’ lesions may be considered as providing the

strongest evidence that the function of a brain region is causally related to a particular behavioral function, if damage to

the region indeed disrupts the performance of the respective behavior. This level of interpretation is inaccessible for

either activation studies or brain–behavior correlations, which are observational in nature and may not differentiate

epiphenomena or spurious effects.

In turn, lesion–symptom associations are complicated by the high plasticity of the human brain (e.g., [95,96]), which

results in substantial remodeling of circuitry as early as days after the insult. In addition, lesion locations are neither

uniform nor random, but either follow a spatial structure determined by the vascular tree, in case of ischemic lesion, or

mainly occur in surface structures, in the case of traumatic brain injury [49,97]. Furthermore, other factors may

contribute to the observed pattern: for example, regions that appear to be structurally intact might have their function

impaired by disconnection from, or damage to, an important ‘coworker’. As these regions are also unable to function

despite being structurally intact, the perturbations ascribed to the damaged regions may be overestimated [97,98].

Noninvasive stimulation techniques offer an experimental approach to perturbation and avoid the limitations of

neuropsychological lesion mapping such as plasticity (though there is evidence for short-term homeostatic effects),

but their application is largely limited to surface structures [99,100]. Furthermore, the questionable focality of transcranial

magnetic stimulation-induced currents [10] and influences of cortical geometry substantially impede the spatial

specificity of brain stimulation. Finally, stimulation of densely connected regions will result in uncontrolled propagation

of the pulse into spatially distant regions [5,6], inducing (uncontrolled) network effects. Thus, a well-controlled

experiment based on a stimulation approach should include an examination of the propagation of the pulse, such

as a compatible electroencephalographic recording, making this a technically challenging approach.
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respect to the target processes (i.e., a ‘pure insertion’; cf. [58]). For example, isolating

‘recollection’ in an fMRI scanner could be operationalized by contrasting recognition of intact

word pairs (which engage both recollection and familiarity) with recognition of recombined word

pairs (driven only by familiarity) [59,60]. Hence, mental functions are studied using very precise

and therefore restricted experimental implementations inferred from cognitive theories. Con-

sequently, as in stimulation studies, the mental operations a participant engages in are

conceptually distant from everyday functions (such as the vivid recollection of a recent meeting),

therefore limiting ecological validity. With regard to internal validity, the assumption of pure

insertion (the assumption that extra processes can be inserted purely, without changing

existing processes or eliciting new processes), upon which the interpretation of activation

relies, has been questioned (cf. [58]). For example, the internal validity of an fMRI study can be

questioned by the fact that epiphenomena of the experimental setting (such as higher atten-

tional demands in a task than in a control condition) cannot easily be dissociated from task-

specific effects.

The Degeneracy Principle

Historically, lesion-deficit approaches (be they neuropsychological or stimulation based) were

generally considered to be important with respect to the study of functional specialization of

brain regions, because observing a relationship between a focal lesion and a behavioral deficit

suggests that this region is necessary for performance. Hence, the lesion approach was long

considered the gold standard for identifying the necessity of a brain region for a given function.

By contrast, the activation approach was considered the optimal approach for identifying which

brain areas were sufficient for a given behavioral function. Accordingly, it was initially hoped that

a combination of lesion-deficit mapping and activation approaches would identify the neces-

sary and sufficient brain regions for a given behavioral task [58]. However, this view had to be

revised subject to the degeneracy principle (i.e., the fact that one unique behavioral output or

outcome can be achieved by different neurocognitive systems [61]). This degeneracy theory

resulted in a conceptual mourning in the human brain mapping field, as it was now considered

that ‘there may be no necessary and sufficient brain area’ for any behavioral function [58].

The Structure-Behavior Correlation Approach

In behavioral science, an alternative to the experimental approach for probing associations

between variables in natural conditions is to examine the relationships among naturally

occurring variations in different variables in a correlative manner [52]. In the study of brain–

behavior relationships, the correlational approach can be used to relate neurobiological and

behavioral characteristics through their covariation across individuals [62]. Using MRI, this is

most commonly performed by testing the correlation between brain morphology (such as local

gray-matter volume or cortical thickness [62]) and behavioral measures across a group of

individuals [63]. Structural brain–behavior correlations include studies on age, gender, and

genetic differences (e.g. [64]), studies on cognitive abilities and other psychological features

derived from tests or questionnaires (e.g., personality traits [65]), as well as studies aiming to

identify morphological correlates of specific clinical symptoms measured with clinical ratings

scales. This approach thus allows a conception of ‘behavioral function’, comprising complex

phenotypes such as skills or clinical symptoms that are evident in everyday life. For example,

episodic memory is frequently probed with the California Verbal Learning Test [66], which has

been inspired by the real-life situation of learning a grocery list, hence probing progressive

acquisition and consolidation of information in memory (e.g., [67]). Contrasting stimulation and

activation studies, but mirroring the lesion-deficit approach, ‘behavioral function’ is thus not an

abstract, experimentally controlled process, but a more ecological quantification of everyday

cognition. Nevertheless, the inferential power (i.e., internal validity) of the correlation approach is
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undermined by a lack of experimental control, which implies that possible alternative processes

and strategies may yield the same or similar behavioral outcomes [61]. The internal validity is

further reduced by the consideration that behavioral measurements could be relatively noisy

proxies of the latent construct(s) they aim to target [68]. This concern is especially noteworthy

for scores based on subjective reports, the reliability of which is frequently questioned [68].

Moreover, neurobiological features like local volume or cortical thickness estimates are influ-

enced by numerous possible factors, which may show complex relationships with the covariate

of interest. This, in turn, may lead to spurious brain–behavior associations (cf. discussion [69]).

Summary and Conclusions

In summary, associations between behavioral functions and brain regions have been studied by

different research fields, which have different concepts of behavioral functions and use different

inference approaches. Beyond technical strengths and weaknesses, the potential of these

different approaches to associate particular behavioral functions with particular brain regions

has been discussed with respect to ecological validity and internal validity (two epistemological

qualities considered in behavioral sciences). With all their different strengths, these approaches

have together contributed to assign multiple behavioral functions, corresponding to different

levels of description, to brain regions.

Although the complementarity of the different approaches can be seen as offering richness in

behavioral associations for brain regions, the original goal of individual studies was typically to

focus on a behavioral function and map it to a brain region, rather than elucidating the exact

function of a given region. That is, the a priori defined construct was a mental operation, and the

object of inference was the brain region that was related to it. We would contend that this

modus operandi has only a very limited capacity to answer the initial question: ‘What does any

part of the brain do?’ In particular, any inference about the role of any brain region that is derived

using this modus operandi is complicated by the principle of degeneracy [61].

For example, investigation into the association between the hippocampus and associative

memory retrieval can be obscured by the fact that recalling an association of two items can be

performed either by retrieving a unitized item integrating both components, or by retrieving the

two associated items; with the second cognitive strategy being more likely to recruit the

hippocampus [70,71]. Accordingly, regardless of the approach used, finding a role for the

hippocampus in the behavioral outcome depends on the neurocognitive aspects that the

behavioral paradigm or measure mostly captures, and the neurocognitive system that the

individual(s) recruit (different participants can recruit different neurocognitive systems). Conse-

quently, identifying a role of the hippocampus in associative retrieval could require several

studies, covering a very heterogeneous range of behavioral paradigms or measures and

performed across different population samples.

In conclusion, assessing the relative functional specialization of brain regions critically requires a

change in viewpoint, where the a priori defined construct is the brain region and the unknowns

are the behavioral functions associated with it [72]. This implies screening a vast range of

potential behavioral associations for a given brain region, and examining which of these are

associated with the region of interest in an unbiased, statistically testable manner that accom-

modates the aforementioned complementarity of different approaches with respect to behav-

ioral aspects. Recent advances in both data availability and statistical methods have provided

very promising avenues for such region-of-interest-based approach.
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Recent Tools Aiding Progress

Activation Data Aggregation

An overview of the behavioral functions engaging a given brain region could be achieved by

scanning a group of individuals for a large range of behavioral conditions that target different

mental functions. This approach has recently been undertaken with 12 participants as part of

the Individual Brain Charting project.i With its ongoing development of specific decoding tools,

this and related projects could significantly contribute to our understanding of the behavioral

engagement of brain regions, providing rich and heterogeneous patterns of region–behavior

associations at the individual level. Nevertheless, ensuring that patterns of association go

beyond the idiosyncrasies of the specific experimental designs and participants will require data

integration across many independent studies [73]. Thus, a ‘subject level’ functional polyhedron

that capitalizes on aggregation of experiments within-subject could complement findings from

across-studies data aggregation.

Integration across studies has now become possible due to two initiatives compiling the results

of published activation studies: BrainMap [74,75] and Neurosynth [76]. Although differing in

their approach to data extraction and labeling (Box 2), both contain the coordinates of local

activation maxima as reported by many thousands of neuroimaging papers, along with

descriptions of the behavioral conditions that yielded the respective activity patterns (e.g.,

‘saccades’). By applying statistical tests accounting for the base rate of activation for a given

region and the base rate of each behavioral condition in the database, the consistency of

particular behavioral associations across thousands of studies can be analyzed for any region

of interest. Such approaches could be seen as ‘functional behavioral profiling’ (‘functional’

referring to the use of activation data).

Using such an approach, it has recently been demonstrated that the anterior insula is engaged

in a very wide range of fMRI tasks [77], suggesting a generic functional role, such as task

engagement maintenance; that could account for all the more specific mental processes that

have previously been discussed for this region. As illustrated in this example, the patterns of

associations across a wide range of tasks can foster new hypotheses, approximating as much

as possible the core role of the region (and thus its operation-function), beyond the behavioral

ontology of the original studies or the database. In a recent study, screening the range of

studies activating the left rostral dorsal premotor cortex (PMd) revealed that this subregion was

activated whenever the task required abstraction from the actual spatial (e.g., scene imagina-

tion), temporal (e.g., explicit memory), or mental frame (e.g., deception) ([78], Figure 1). This

observation was only possible after integrating activations across different tasks and behavioral

domains, and we can speculate that this ‘abstraction’ property actually reflects the use of

sequential processing (spatial or temporal) in the PMd for various types of predictions beyond

the current framework, in line with the Bayesian brain hypothesis.

Although databases of activation data have existed for many years, systematic ‘functional

behavioral profiling’ using these databases is still in its infancy. While this approach shows great

potential for disclosing wide patterns of associations, many statistical considerations have to be

taken into account. This difficulty has been illustrated recently by a vigorous debate over the

functional specialization of the anterior cingulate cortex (ACC), based on conflicting conclusions

derived by two groups of authors [79–81]. Such discussions highlight the need to critically

investigate the inferential approaches that rely on different statistical considerations, when

aiming to comprehensively characterize the pattern of associations for a given brain region.

Somewhat relatedly, the use of activation databases for behavioral profiling of brain regions

has, to date, focused on single databases while, as discussed in Box 3, BrainMap and
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Neurosynth show complementary limitations and advantages, suggesting that their combina-

tion could provide a more comprehensive profiling and better overview than the previous focus

on either of them in isolation. Finally, while a quantitative summary of activation data may thus

disclose patterns across tasks from different research fields, it does not allow for disentangling

whether the engagement of the brain region plays a crucial role in task performance or whether

it is just an epiphenomenon related to experimental implementation (such as more intense

visual fixation or cognitive engagement). This highlights the potential benefit of a correlational

approach using more naturalistic tasks to complement our view on behavioral associations for a

given brain region. The potential outcomes and limitations of such an approach are discussed

in the next section.
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Figure 1. Illustration of Behavioral Functional Profiling for the Left Rostral Dorsal Premotor Cortex (PMd). Activation databases (such as BrainMap and

Neurosynth) contain a collection of activation peaks that have been reported in stereotactic space in scientific papers, as well as information on behavioral conditions

associated with these peaks (based on the behavioral task that the participants had to perform in the MRI scanner). For a given brain region-of-interest (here the rostral

left PMd), we searched among all the peaks of activation reported in the BrainMap database for those that were located in this region. In this database, the behavioral

condition related to each peak is specified in terms of behavioral paradigms and behavior domains. Examining the behavioral paradigms and behavioral domains in

which the peaks of activation were consistently reported in the region-of-interest allowed us to establish a behavioral profile of this region. As illustrated in the left inferior

panel, the left rostral PMd was found to be activated in experimental tasks probing explicit memory, object or scene imagination, and deception [78]. The face used to

illustrate a recognition paradigm comes from the Glasgow Unfamiliar Face Database (GUFD) [104].
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Correlation in Large-Scale Population Samples

An emerging ethos of data sharing has promoted open access to a growing number of large

datasets of neuroimaging and phenotypical data [82,83]. The Human Connectome Project

(HCP, [84]), the 1000Brains study [85], and the UK Biobank [86] are instances of such initiatives.

They provide multimodal brain imaging, information on history and current life-style, question-

naire scores, and a substantial range of standard neuropsychological measures that address

several cognitive dimensions, such as working memory, executive functions, and verbal

learning. Brain characteristics measured with MRI in large-scale population data show a natural

covariance with cognitive phenotypes (Figure 2A, [86]), which allows a standard correlation

approach for identification of specific brain regions that are related to behavioral dimensions of

a priori interest (such as conscientiousness [65], Figure 2B). It would also allow evaluation of a

specific association between a region of interest and a priori selected behavioral variables (such

as hippocampus volume and memory performance [87], Figure 2C) within a hypothesis-driven

framework.

Supporting the validity of such an approach to capture brain–behavior relationships, measures

tapping into similar aspects of behavior tend to show correlation in the same brain region (such

as immediate recall and delayed recall in a list-learning task [87], or extraversion and consci-

entiousness in the assessment of personality [65]). Such relationships open the perspective of

an exploratory approach searching for significant associations between brain measurements in

an a priori selected region of interest and a wide range of psychometric variables. That is,

capitalizing on the hypothesis that neurobiological features such as gray-matter volume and

cortical thickness covary locally with behavioral characteristics [62,88], the behavioral functions

in which a given brain region potentially play a relative role could be inferred from its structural

brain–behavior correlation across the range of phenotypical variables. As this approach is built

on a very distinct conceptualization of mental functions through the assessment of complex,

Box 3. BrainMap and Neurosynth

BrainMap and Neurosynth are both collections of results of activation studies, consisting of reported coordinates and

information about the experimental context. BrainMap [75,101] is based on manual encoding of spatial coordinates and

behavioral conditions, according to an expert-defined ontology. That is, each reported set of coordinates is encoded

with respect to the employed paradigm, the assessed contrast, and other aspects such as stimuli or required

responses. This labeling is cross-validated by a second investigator, yielding a rigorous standard of labeling, resulting

in rather slow growth and confinement to an a priori taxonomy.

Neurosynth [76], by contrast, is based on automated text-mining. First, coordinates are extracted from published

neuroimaging articles using an automated parser, without distinction between different contrasts or experiments. Thus,

one major difference between both databases is that BrainMap works on the experiment level (single contrast) and

Neurosynth on the study level (complete paper). In the latter database, each article is then ‘tagged' with those terms that

occur with high frequency in the abstract of the paper. This automated parsing has the advantage of not being limited by

a predefined set of labels. By contrast, it comes with the drawback that the descriptions are solely based on the words

used to describe the study by the authors. Consequently, the labels will summarize the conceptual terms that the

researchers (or the reviewers) wanted to see addressed, not necessarily the behavioral function or process that was truly

isolated.

Thus, both databases are based on current psychological ontologies and terminology but may provide slightly different

behavioral information for a given brain region. For example, memory-related terms associated with the hippocampus in

BrainMap would be ‘explicit memory’, while Neurosynth would provide terms such as ‘remember’, and ‘remembering’.

While the former lacks semantic precision, the latter could be (spuriously) driven by the fact that many studies

addressing ‘remember’ have focused on the medial temporal lobe. As region-of-interest studies are not excluded

in Neurosynth, there is a potential for self-fulfilling prophecies. Hence, each approach has its own strengths and

drawbacks, and deeper insights would likely result from their combination.
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Figure 2. Structural Brain–Behavior Correlation Approach. (A) Manhattan plot relating a set of cerebral measures derived from anatomical images to non-brain

phenotypical variables (1100 variables clustered into major groups along the x-axis) in the UK BioBank cohort. For each variable, the significance of the cross-subject

correlation with each brain measure set is plotted vertically in units of �log10 [86]. (B) Positive correlation between conscientiousness scores and gray-matter volume

(GMV) in the cuneus in males only, within a sample from the Human Connectome Project (HCP) [65]. (C) Significant relationship between hippocampal volume and

immediate recall performance at the Rey Auditory Verbal Learning Test interacting with gender in a sample of participants with mild cognitive impairment (MCI) from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [87]. Abbreviations: Bonf, Bonferroni correction; FDR, false discovery rate; n, number of participants.
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ecologically more valid tasks than the specific contrasts offered by the activation approach, it

should reveal complementary patterns of behavioral association for any given region. Thus,

ultimately, for a given brain region, the pattern of behavioral associations revealed by this

structural correlation approach should be integrated with the pattern of behavioral associations

derived from activation data, to offer a multiconceptual and multimodal pattern of behavioral

associations for any brain region. This hybrid approach would, in turn, help to develop new

hypotheses on the operation-function of any region.

Toward Testing of Interaction Models and Finer Scales

The correlation approach and, more generally, any data-driven approach using big datasets in

which researchers just ‘let the data speak’ have their own limitations, as the neuroimaging and

psychometric data may contain substantial noise [89], with confounding factors partly driving

the observed effect [68]. Ultimately, the function of any brain region should be considered within

an integrative approach, including not only patterns revealed by local properties, but also

interactions with other brain regions. In other words, data-driven approaches that adopt a

functional segregation view and are applied to aggregated observations, offer a great oppor-

tunity for exploratory work and discovery science, but any resulting ‘operation-function’

hypothesis should be integrated into a functional model, tested with a hypothesis-based

approach. As discussed previously, each approach has its own technical and scientific

strengths and limitations, suggesting that a comprehensive evaluation of a given hypothesis

should capitalize on a combination of different approaches, rather than focus exclusively on any

one of them (see Outstanding Questions). Technical advances can now offer better experi-

mental control, such as by combining electroencephalography (EEG) with focal brain stimula-

tion [90]. Furthermore, Bayesian-based methodological frameworks, such as dynamic causal

modeling, have been successful in recent years in the statistical testing of neurocognitive

models, and can now even be extended to combined EEG–fMRI paradigms [91]. Altogether,

these technical and methodological developments hold great promise for testing models of

operation-functions computed by different brain areas in interaction.

As previously discussed [16], in humans, assigning behavioral functions to neuronal popula-

tions using a noninvasive neuroimaging approach is restricted by the spatial resolution and

precision of these techniques. In particular, individual differences in neuroanatomy can result in

mixed functional activation patterns when data from several participants are aggregated in fMRI

studies. Several improved approaches for areal alignment across participants in MRI data have

been proposed, allowing further examination at the individual level of the structure–function

relationships that are suggested by large-scale activation data aggregation (Box 4). Neverthe-

less, the spatial scale of local functional specialization remains limited by the intrinsic spatial

resolution of MRI. That is, activation/structure–behavior covariance within a predefined area

could represent a mixture of spatially proximate but functionally independent units, whose

separation cannot be resolved by MRI. One consequence of this intrinsic spatial resolution is

that inference approaches can only assign a ‘supraordinal’ function to a given brain area,

summarizing the different functions performed by different neuronal subpopulations contained

within a voxel. Invasive human studies and animal models could further test this hypothesis and

help to refine our knowledge of the functional specialization of particular cell populations, such

as place cells in the hippocampus (see e.g., Stachenfeld et al. [92]), and thus complement

functional specialization patterns derived from other approaches.
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Concluding Remarks

Despite centuries of study of brain–behavior relationships, a clear formalization of the function

of many brain regions, accounting for the engagement of the region in different behavioral

functions, is lacking. Recent progress in data aggregation methods has opened a wide avenue

for a systematic, multiconceptual characterization of behavioral associations for any brain

region. On the one hand, previous decades of fMRI and PET activation experiments have

provided a wealth of results that can be used to shift the perspective toward searching for the

range of behavioral associations of brain regions using a quantitative approach. On the other

hand, large-scale population datasets open new possibilities for a complementary approach

based on covariance between neurobiological and behavioral features. This hybrid behavioral

profiling could leverage the myriad of behavioral aspects of any brain region, hence progres-

sively unveiling the nature of the function of brain regions and networks.
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