001     844167
005     20230127125334.0
024 7 _ |a 10.5194/acp-2018-90
|2 doi
024 7 _ |a 2128/17577
|2 Handle
024 7 _ |a altmetric:33679803
|2 altmetric
037 _ _ |a FZJ-2018-01629
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Fiore, Arlene M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Regional and intercontinental pollution signatures on modeled and measured PAN at northern mid-latitude mountain sites
260 _ _ |a Katlenburg-Lindau
|c 2018
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1520347071_21026
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Peroxy acetyl nitrate (PAN) is the most important reservoir species for nitrogen oxides (NOx) in the remote troposphere. Upon decomposition in remote regions, PAN promotes efficient ozone production. We evaluate monthly mean PAN abundances from global chemical transport model simulations (HTAP1) for 2001 with measurements from five northern mid-latitude mountain sites (four European and one North American). The multi-model mean generally captures the observed monthly mean PAN but individual models simulate a factor of ~ 4–8 range in monthly abundances. We quantify PAN source-receptor relationships at the measurement sites with sensitivity simulations that decrease regional anthropogenic emissions of PAN (and ozone) precursors by 20 % from North America (NA), Europe (EU), and East Asia (EA). The HTAP1 models attribute more of the observed PAN at Jungfraujoch (Switzerland) to emissions in NA and EA, and less to EU, than a prior trajectory-based estimate. The trajectory-based and modeling approaches agree that EU emissions play a role in the observed springtime PAN maximum at Jungfraujoch. The signal from anthropogenic emissions on PAN is strongest at Jungfraujoch and Mount Bachelor (Oregon, U.S.A.) during April. In this month, PAN source-receptor relationships correlate both with model differences in regional anthropogenic volatile organic compound (AVOC) emissions and with ozone source-receptor relationships. PAN observations at mountaintop sites can thus provide key information for evaluating models, including links between PAN and ozone production and source-receptor relationships. Establishing routine, long-term, mountaintop measurements is essential given the large observed interannual variability in PAN.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 1
700 1 _ |a Fischer, Emily V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Deolal, Shubha Pandey
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wild, Oliver
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jaffe, Dan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Staehelin, Johannes
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Clifton, Olivia E.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Milly, George P.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bergmann, Dan
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Collins, William
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Dentener, Frank
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Doherty, Ruth M.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Duncan, Bryan N.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Fischer, Bernd
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Gilge, Stefan
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Hess, Peter G.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Horowitz, Larry W.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Lupu, Alexandru
|0 P:(DE-HGF)0
|b 17
700 1 _ |a MacKenzie, Ian
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Park, Rokjin
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Ries, Ludwig
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Sanderson, Michael
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Schultz, Martin
|0 P:(DE-Juel1)6952
|b 22
700 1 _ |a Shindell, Drew T.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Steinbacher, Martin
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Stevenson, David S.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Szopa, Sophie
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Zellweger, Christoph
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Zeng, Guang
|0 P:(DE-HGF)0
|b 28
773 _ _ |a 10.5194/acp-2018-90
|0 PERI:(DE-600)2069857-4
|p 90
|t Atmospheric chemistry and physics / Discussions
|v 1
|y 2018
|x 1680-7367
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/844167/files/acp-2018-90.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/844167/files/acp-2018-90.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/844167/files/acp-2018-90.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/844167/files/acp-2018-90.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/844167/files/acp-2018-90.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:844167
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21