000844206 001__ 844206
000844206 005__ 20210129232825.0
000844206 0247_ $$2doi$$a10.1039/C7NJ04934J
000844206 0247_ $$2ISSN$$a0398-9836
000844206 0247_ $$2ISSN$$a1144-0546
000844206 0247_ $$2ISSN$$a1369-9261
000844206 0247_ $$2WOS$$aWOS:000424970300082
000844206 037__ $$aFZJ-2018-01658
000844206 082__ $$a540
000844206 1001_ $$0P:(DE-Juel1)170029$$aShams, Fatemeh$$b0
000844206 245__ $$aRietveld structure refinement to optimize the correlation between cation disordering and magnetic features of CoFe$_2$O$_4$ nanoparticles
000844206 260__ $$aLondon$$bRSC$$c2018
000844206 3367_ $$2DRIVER$$aarticle
000844206 3367_ $$2DataCite$$aOutput Types/Journal article
000844206 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1530249346_14343
000844206 3367_ $$2BibTeX$$aARTICLE
000844206 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844206 3367_ $$00$$2EndNote$$aJournal Article
000844206 520__ $$aThe structural properties of cobalt ferrite nanoparticles have significant effects on their magnetic behavior. In the current study, we thoroughly scrutinized and optimized the structural characteristics of CoFe$_2$O$_4$ nanoparticles and the correlation with their magnetic properties as a function of the synthesis parameters using Rietveld structure refinement. Nanoparticles were synthesized using co-precipitation method based on design of experiments and then characterized using X-ray diffraction, vibrating sample magnetometry, transmission electron microscopy, and energy dispersive X-ray spectroscopy analyses.Based on response surface methodology studies, we identified factors that had an effect on the structural and magnetic features. In order to reach maximum magnetization, the cations distribution was optimized, and the pH amount and reaction temperature were identified as the most influential factors.We observed that the initial cation ratio of Co$^{2+}$/Fe$^{3+}$ sharply affected the cations distribution, which was subsequently involved in the different structural characteristics and magnetization of nanoparticles. Thiscan be attributed to the hybrid structure formation and magnetic exchange interactions of cations. Finally, the maximum magnetization was achieved at the optimum cations distribution of (Co$_{0.32}$Fe$_{0.68}$)(Co$_{0.70}$Fe$_{1.30}$)O$_4$, where the difference between distributed cobalt cations in tetrahedral and octahedral sites was minimum.
000844206 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000844206 588__ $$aDataset connected to CrossRef
000844206 7001_ $$0P:(DE-HGF)0$$aKashefi, M.$$b1$$eCorresponding author
000844206 7001_ $$0P:(DE-Juel1)162347$$aSchmitz-Antoniak, Carolin$$b2
000844206 773__ $$0PERI:(DE-600)1472933-7$$a10.1039/C7NJ04934J$$gVol. 42, no. 4, p. 3050 - 3062$$n4$$p3050 - 3062$$tNew journal of chemistry$$v42$$x1369-9261$$y2018
000844206 8564_ $$uhttps://juser.fz-juelich.de/record/844206/files/c7nj04934j.pdf$$yRestricted
000844206 8564_ $$uhttps://juser.fz-juelich.de/record/844206/files/c7nj04934j.gif?subformat=icon$$xicon$$yRestricted
000844206 8564_ $$uhttps://juser.fz-juelich.de/record/844206/files/c7nj04934j.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844206 8564_ $$uhttps://juser.fz-juelich.de/record/844206/files/c7nj04934j.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844206 8564_ $$uhttps://juser.fz-juelich.de/record/844206/files/c7nj04934j.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844206 8564_ $$uhttps://juser.fz-juelich.de/record/844206/files/c7nj04934j.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844206 909CO $$ooai:juser.fz-juelich.de:844206$$pVDB
000844206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170029$$aForschungszentrum Jülich$$b0$$kFZJ
000844206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162347$$aForschungszentrum Jülich$$b2$$kFZJ
000844206 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000844206 9141_ $$y2018
000844206 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000844206 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844206 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844206 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J CHEM : 2015
000844206 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844206 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844206 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844206 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844206 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844206 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844206 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844206 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844206 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844206 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844206 920__ $$lyes
000844206 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000844206 980__ $$ajournal
000844206 980__ $$aVDB
000844206 980__ $$aI:(DE-Juel1)PGI-6-20110106
000844206 980__ $$aUNRESTRICTED