

Recent Progress of the Storage Ring EDM Search with the JEDI Collaboration

28.02.2018 | Maria Żurek for JEDI Collaboration Forschungszentrum Jülich, Institut für Kernphysik

Baryon Asymmetry Problem

	Standard Model	Observed
$\frac{n_B - n_{\bar{B}}}{n_{\gamma}}$	≈ 10 ⁻¹⁸	6×10^{-10}

Preconditions needed to explain it:

- Baryon number vi dati on
- C and CP violation
- Thermal non-equilibrium in the early Univer

Sakharov (1967)

Baryon Asymmetry Problem

- Electroweak sector (CKM matrix well established)
 - → First observation: 1964 decay of the neutral K meson
- Strong Interactions (so called θ -term)
 - → Not observed experimentally yet (it is very small)
 - → Strong CP puzzle

Predictions orders of magnitude too small to explain the observed matter-antimatter asymmetry!

New sources of CP violation Beyond Standard Model needed!

They can manifest in Electric Dipole Moments of particles

Electric Dipole Moment

Classically

Charge × displacement

In Quantum Mechanics

$$d = d\sigma$$

• d || σ and μ || σ (magnetic moment)

μ – magnetic dipole moment

d – electric dipole moment

EDM – CP violation

The observable quantity:

- Energy of electric dipole in electric field
- Energy of magnetic dipole in magnetic field

$$H = H_E + H_M = - \mu \sigma \cdot B - d\sigma \cdot E$$

$$T: H = - \mu \sigma \cdot B + d\sigma \cdot E$$

$$P: H = - \mu \sigma \cdot B + d\sigma \cdot E$$

H violates T and P symmetry if **d**≠**0**

T violation → CP violation (since CPT conserved)

Measurement principle

For charged partides:

→ apply electric fieldina storage ring

S mpl i fied case:

"Frozen spin"

Build-up of vertical polarization by slow precession

Extremely small effects!

With edm ~ 10⁻²⁹ e·cm effect of the order of µdeg/hour

Measurement principle

Thomas-BMT equation:

In storage rings (magnetic field – vertical, electric field - radial)

Magnetic moment causes fast spin precession in horizontal plane

 Ω : angular precession frequency

d: electric dipole moment

G: anomalous magnetic moment

y: Lorentz factor

Measurement

Pure magnetic ring

magnetic moment **EDM** $\frac{G\vec{B}}{G\vec{B}} + \left(\frac{1}{\gamma^2 - 1} - G\right) \frac{\vec{\beta} \times \vec{E}}{c} \quad d\frac{m_0}{g\hbar S} (\vec{E} + c\vec{\beta} \times \vec{B})$ **EDM**

Research and Development at COSY

JEDI

http://collaborations.fz-juelich.de/ikp/jedi/

EDMs of charged hadrons: p, d

R&D with deuterons

p = 1 GeV/c

G = -0.14256177(72)

 $v_s \approx -0.161 \rightarrow f \approx 120 \text{ kHz}$

study spin tune $v_S = \frac{|\overrightarrow{\Omega}|}{|\overrightarrow{\omega}_{ ext{cycl}}|} = \gamma G$

→ phase advance per turn

Research and Development at COSY

- Measurement of fast precessing polarization
 Phys. Rev. ST Accel. Beams 17, 052803 (2014)
- Precise determination of spin tune
 Phys. Rev. Lett. 115, 094801 (2015)
- Spin coherence time
 Phys. Rev. Lett. 117, 054801 (2016)
- Phase lock of spin precession Phys. Rev. Lett. 119, 014801 (2017)
- Dedicated polarimetry → D. Shergelashvili (HK 36.6) and F. Müller (HK 36.7) talks
- Beam instrumentation → F. Abusaif (HK 41.3) talk
- Wien filter commissioning
- Database for future polarimetry

Measurement in COSY

Pure magnetic ring

E* fieldtilts spindue to EDM 50% of time up 50% of time down

$$\frac{d\vec{S}}{dt} \propto \left(G\vec{B} + d \frac{m_0 c}{q \hbar S} \vec{\beta} \times \vec{B} \right) \times \vec{S}$$

MeasurementRF Wien Filter method

Wien Filter: introduces B and E field oscillating with radio frequency

Lorentz force vanishes: no effect on EDM rotation

Effect: Adds extra horizontal precession

Wien Filter has to be always **in phase** with the horizontal spin precession!

Feedback system developed and tested: Phys. Pev. Lett., 119, 014801 (2017) Resonant frequency controlled, precession of spin phase locked

Wien Filter Commissioning

Wien Filter Commissioning – 90° mode

Spin rotations with phase lock

$$\varphi(t) = 2\pi v_s f_C t$$

$$B_{WF}(t) = B_0 \sin(\omega t + \Delta \varphi)$$

Task: maintain $\omega = 2\pi |k + \nu_s| f_C$ and fix $\Delta \varphi$

→ Controlled via WF frequency

Spin build-up as a function of phase $\sim \sin\Delta\phi \rightarrow$ Feedback system works properly!

time in cycle [s]

-0.1

-0.15

-0.2

Wien Filter Commissioning – 0° mode

Spin rotations with phase lock

We see vertical polarization buildup → EDM-like signal

Two **systematic** contributions:

- 1. Residual, radial magnetic field from WF
- → effect equivalent to WF rotation
- 2. Field imperfections in COSY
- → transverse contribution: equivalent to WF rotation
- → longitudinal contribution: equivalent to additional static solenoid field

The measurement shows the stability of COSY conditions within 24 hours

Reaction: dC elastic scattering

Up/Down asymmetry

Right/Left asymmetry

∝ vertical component of polarization P_v

Motivation: database to produce realistic Monte Carlo simulations of detector responses for a polarimeter designed for EDM

Goal: A_{vv} , A_{vv} , $d\sigma/d\Omega$ for

- → dC elastic scattering
- → main background reactions (deuteron breakup)

Beamtime in November 2016 (2 weeks)

d energies: 170, 200, 235, 270,

300, 340, 380 MeV **Targets:** C and CH₂

Beam polarization: 5 polarization states $(P_y, P_{yy}) = (0,0), (-\frac{2}{3},0), (\frac{2}{3},0), (\frac{1}{2}, -\frac{1}{2}), (-1, 1)$

Setup: Modified WASA Forward Detector

Conclusions

- EDMs of elementary particles key for understanding sources of CP viol ation
 - → explanation of matter antimatter imbalance
- Princi ple of experiments measurements of spin precession in magnetic field
- EDM of charged particl & measured in storage rings
- COSY: ideal starting point for P&D and a pre-cursor experiment with Wien Filter method

Backup

Fundamental Discrete Symmetries

A physical model is symmetric under a certain operation

→ if its properties are invariant under this operation

- T-symmetry: $t \rightarrow -t$
- P-symmetry: $\mathbf{r} \rightarrow -\mathbf{r}$
- C-sy mmetry: parti d e-antiparti d e interchange
- CPT conserved

	С	Р	Т	CP
Electric field E	-E	-E	Ε	E
Magnetic field B	-B	В	-B	-B
Momentum p	р	-p	-р	-p
Angular momentum I	I	I	-1	ı
Charge density q	-q	q	q	-q

EDM – Orders of magnitude

Neutron (udd)

Charge e
$$|\mathbf{r_1} - \mathbf{r_2}|$$
 1 fm = 10 $^{-13}$ cm

EDM

Naive expectation 10 $^{-13}$ e \cdot cm

Observed (upper limit) $< 3 \cdot 10^{-26}$ e \cdot cm

SM prediction $\sim 10^{-32}$ e \cdot cm

- Parity violation
- CP electroweak violation

nEDM of 10 $^{-26}$ e · cm \rightarrow separation of u from d quarks of ~ 5 · 10 $^{-26}$ cm

Electric Dipole Moment of proton and deuteron

No direct measurement

Disentangle the fundamental source(s) of EMs

Experimental requirements

High precision storage ring alignment, stability, field homogeneity

High intensity beams $N = 4 \times 10^{10}$ per fill

Polarized hadron beams P = 0.8

Large electric fields E = 10 MV/m

Long spin coherence time $\tau = 1000 \text{ s}$

Polarimetry analyzing power A = 0.6, acc. f = 0.005

Challenge: systematic uncertainties on the same level!

Even in Pure Electric Ring – lots of sources of syst. uncertainties

→ Very small radial B field can mimic an EDM effect

µB_r ~ dE_r

Measurement

Pure electric ring

magnetic moment EDM
$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G \right) \frac{\vec{\beta} \times \vec{E}}{c} + d \frac{m_0}{q\hbar S} (\vec{E} + c\vec{\beta} \times \vec{B}) \right\} \times \vec{S}$$

$$\equiv 0!$$

Storage rings: combined ring

magnetic moment EDM
$$G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G\right) \frac{\vec{\beta} \times \vec{E}}{c} \quad d \frac{m_0}{q\hbar S} (\vec{E} + c\vec{\beta} \times \vec{B})$$

$$\vec{B} \quad \vec{E}$$

Polarimetry

Detector signal	
Asymmetry	
Challenges	
•	
•	

Polarimetry

Too few polarimeter events to resolve oscillation directly!

Map many events to one cycle Phys. Rev. ST Accel. Beams 17, 052803 (2014)

Polarimetry

beam revolutions: counting turn number n

scan v_s in some interval around $v_s = \gamma G$

Spin tune measurement

Monitoring phase of asymmetry with fixed spin tune

Spin coherence time

At the beginning all spin vectors aligned

After some time spin vectors all out of phase

Polarization vanishes → measurement time limited

$$\frac{\Delta \gamma}{\gamma} = \beta^2 \frac{\Delta p}{p} \approx 10^{-4} = \frac{\Delta \nu}{\nu} \implies \Delta \varphi \approx 60 \, \text{rad/s}$$

- unbunched beam: $\frac{\Delta \gamma}{\gamma} \approx 10^{-5} \implies \text{decoherence in < 1s}$
- bunching: eliminate effects on $\frac{\Delta p}{p}$ in 1st order $\rightarrow \tau \approx 20 \text{ s}$
- correcting higher order effects using sextupoles and (pre-) cooling $\rightarrow \tau \approx 1000 \text{ s}$

Spin coherence time

Controling spin direction

Feedback system

Goal: Maintain resonance frequency and phase between spin precession and Wien filter

- → keep precession frequency stable
- → match frequency and phase to Wien filter

Test at COSY:

control spin tune via COSY rf:

$$\nu_s = G\gamma$$

control phase to external frequency by accelerating/decelerating spin precession

PRL, 119, 014801 (2017)

Wien Filter Commissioning

Detuned WF: residual Lorentz force

Tuned WF: Lorenz force vanishes

Detuned WF: residual Lorentz force excites beam at WF frequency

→ Lock-in amplifier connected to BPMs measures amplitude of beam oscillations

